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Abstract: Polarized spectra–hyperspectral data fusion technique was used to estimate the soluble sugar (SS), total nitrogen (N), 

and their ratio (SS/N), of greenhouse tomato leaves.  Fresh tomato leaves of five different growth stages (seedling, flowering, 

initial fruiting, mid-fruiting and picking stage) and five different nitrogen treatments (severe stress 25%, moderate stress 50%, 

mild stress 75%, normal 100%, and excess 150%) at every stage were collected for spectra acquisition and SS and N 

determination.  Polarized reflectance spectra were acquired with a polarization reflectance spectrum spectro-goniophotometer 

system and four polarization degree features were extracted.  Hyperspectral data were collected with a hyperspectral imaging 

system and four reflectance spectrum features and eight image features were extracted.  Initially, models were built with 

polarization degree features, image features, and spectral features respectively.  Linear and nonlinear fusion methods were 

comparatively used for modeling based on normalized data of the three sources.  The results suggest that the performances of 

SS/N models are better than those of N and SS models, and the prediction capability of the Support Vector Machine (SVM) 

models of N and SS/N are superior to those obtained with single kind feature.  This work indicates that the polarized 

spectrum-hyperspectral multidimensional information detecting method can feasibly judge the tomato nutrient stress conditions.  

Multi-features data fusion analysis technique can enhance the prediction accuracy of spectral diagnostics technology in 

precision agriculture. 
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1  Introduction

 

Carbon (C) and nitrogen (N) are the basic constituent elements 

of organic matter; thus, quantitative monitoring of carbonaceous 

and nitrogenous substances in plants is an important research 

direction[1, 2].  N is the main component of proteins, chlorophyll 

and nucleic acids, and is thus known as “the element of crop life”[3].  

Different nutrient physiologic conditions, especially N, have 

different effects on the growth rate of plants[4], dry matter 

distribution[5], nutrient uptake state[6], soil physical and chemical 

properties[7], photosynthesis[8], and carbon and nitrogen 

metabolism[2].  Among these, the carbon-nitrogen ratio (C/N) 

reflects the physiological status and growth vigor of the plant[9].  

The C/N is expressed in a variety of forms, including total 

carbon/total nitrogen[10], (cellulose + lignin)/total nitrogen[11], and 

soluble sugar/total nitrogen (SS/N)[12].  In this study, the SS/N 

form was selected for study because tomato soluble sugar (SS) 

content is one of the most crucial internal quality factors, which can 

                                                 
Received date: 2018-03-28    Accepted date: 2020-01-16 

Biographies: Jinyang Li, PhD, Associate Professor, research interest: biological 

information sensing, Email: by0817136@163.com; Lin Li, Assistant Researcher, 

research interests: agricultural engineering, Email: lilin@ujs.edu.cn; Aichen 

Wang, Assistant researcher, research interests: agricultural engineering, Email: 

winterwac@163.com; Xinhua Wei, PhD, Professor, research interest: intelligent 

agricultural equipment, Email: wei_xh@126.com; Hanping Mao, PhD, 

Professor, research interest: intelligent agricultural equipment, maohp@ujs.edu.cn.  

*Corresponding author: Wenjing Zhu, PhD, Assistant Researcher, research 

interests: agricultural information technology. Jiangsu University, Zhenjiang 

212013, China.  Tel: +86-511-88797338, Email: zwj0410@foxmail.com. 

determine the fruit sweetness and flavor quality, in addition to 

being sensitive to nutritional status, and thus better reflects the 

plant growth status[13].  Plant physiology studies have already 

shown that the route of tomato fruit SS accumulation is mainly 

through two cytological pathways: apoplastic unloading and plastid 

pathway unloading[14].  Both methods require long-distance 

transport from the blade through the sieve tube, then unloading 

from the sieve element/companion cell complexes to the fruit[15].  

Hence, the non-destructive testing of leaves is important for the 

diagnosis and management of N and SS/N in tomato growth. 

In recent years, numerous studies involving rapid estimation 

of plant leaf nutrient requirements have been carried out with 

hyperspectral imaging to replace time-consuming and costly 

traditional chemical analysis.  Researchers attempted to apply 

hyperspectral imaging technique to diagnosis and estimate plant 

properties, such as nitrogen concentration in flue-cured tobacco 

leaves[3], nitrogen deficiency effects on plant growth, leaf 

photosynthesis, and hyperspectral reflectance properties of 

sorghum[16], and chlorophyll concentration to display the nitrogen 

deficiency distribution map of cucumber leaves[17].  Analytical 

models were successfully developed to optimize remotely-sensed 

vegetation indices for retrieving leaf biochemical constituents[18,19], 

to investigate changes at the leaf scale[20,21] or canopy level[22,23].  

In addition to detecting the major elements, an SS content model of 

oilseed rape leaves was built via a back-propagation neural 

network[24].  Typical indices aimed at N estimation and 

chlorophyll evaluation were tested to assess leaf C/N in winter 

wheat and spring barley[25].  Leaf C/N ratios were estimated in 

three forest sites, with R2 of the models being more than 0.8 with 
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not more than 4 wavelengths being selected[26].  These studies 

show that using hyperspectral imaging technique to estimate plant 

N, SS, and C/N status is feasible.  However, these studies used 

sensors to collect leaf spectral information at a fixed angle, and 

focused on wavelength information or strength of the light source, 

such as reflectivity or reflection intensity.  In reality, light 

intensity, wavelength, phase, and polarization contain large 

amounts of information, but polarization examination is rarely 

performed.  The mechanisms of polarization reflection spectra can 

effectively improve the modeling, and be useful to the condition of 

isotropy diffuse reflection inversion.  Since the 1970s, 

technologies for polarization reflection spectroscopy have rapidly 

developed, with applications in many research areas[27].  Polarized 

reflectance spectroscopy was applied in a variety of plants both at 

the single-leaf and canopy level, such as laurel (Laurus nobilis), 

mullein (Verbascum thapsus L.)[28], wheat (Triticum aestivum)[29], 

chrysina gloriosa (Gloriosa superba L.)[30], arabidopsis 

(arabidopsis thaliana Linn. Heynh.)[31] and citrus (Citrus 

reticulate)[32].  Shibayama et al.[29] discussed the volume, specular, 

and hot-spot scattering features of heading-stage wheat canopies. 

Wu et al.[33] found the five reflectance parameters of sedum 

spectabile boreau (Hylotelephium erythrostictum Miq. H. Ohba) 

were consistent for all spectral and spatial aspects by polarized 

hyperspectral imaging, and concluded that polarization-measured 

reflectance images can replace traditional remote sensing intensity 

reflectance images.  In addition, Tan and Khan[34] conducted 

polarimetric measurements of the backscattered light from lilac 

leaves and found that depolarization ratio was a good indicator of 

water stress.  

Few investigations of tomato carbon and nitrogen metabolism 

by feature layer data fusion of polarized spectra–hyperspectral 

measurements have been reported, although tomato is cultivated in 

several Chinese provinces as a significant alimentary crop with 

large yield and planting area.  Song et al.[35] proposed that 

polarized reflectance features of leaves were mainly affected by 

viewing zenith angle, incident zenith angle, azimuth, and polarizer 

angle after they observed single maize (Zea mays L.) leaves.  Liao 

et al.[36] investigated the effects of observation angle on the 

estimation of leaf area index of two types of summer maize, and 

established partial least square regression models; the results show 

that the simple ratio index model has obtained the highest 

estimation accuracy, with R2 of 0.47 and RMSE of 0.30, by the 

combination of six observation angles.  Lü[37] measured the 

polarization of a corn canopy in different growth periods, at the 

nadir before heading, and found that polarized light accounts for up 

to 10% of the total reflection.  Jay et al.[38] evaluated the potential 

of nadir and off-nadir ground-based spectro-radiometric 

measurements to remotely sense five plant traits relevant for field 

phenotyping, namely, the leaf area index, leaf chlorophyll and 

nitrogen contents, and canopy chlorophyll and nitrogen contents 

over fourteen sugar beet (Beta vulgaris L.) cultivars.  They 

showed great potential to retrieve canopy nitrogen content, with 

RMSE = 10%, while the estimation of leaf-level quantities was less 

accurate, with the best accuracy being RMSE = 17%.  Our 

research team assessed the feasibility of determining the nitrogen 

and potassium content of fresh, greenhouse-grown tomato leaves 

by using a self-developed polarization reflectance spectrum 

spectro-goniophotometer system, and found that it was more 

accurate to measure the nitrogen and potassium content with 

polarized models[39,40]. 

In this study, we extract data from both the hyperspectral 

imaging system and polarized spectro-goniophotometer 

measurements to obtain complex information.  We take into 

consideration both the characteristics of the continuous correlation 

of spectral data and the advantages of specific spatial angles, 

making the predictive model more robust.  We evaluate the 

accuracy and feasibility of establishing predictive models of N, SS, 

and SS/N.  Rapid detection combined with data fusion provides 

the theoretical basis and technical support for predicting the carbon 

and nitrogen metabolism parameters of crops. 

2  Materials and methods 

2.1  Sample preparation  

Tomato (Lycopersicon esculentum Mill) seedlings with five 

true leaves from the Vegetable Research Institute, Academy of 

Agricultural Sciences, Liaoning Province, China, were transplanted 

individually into pots filled with perlite in a Venlo-type greenhouse 

at Jiangsu University in China (32.11ºN, 119.27ºE).  Plants were 

spaced in double rows at a density of 30 cm2 per plant.  In contrast 

to conventional agriculture, the application and availability of 

nutrients can be monitored easily in greenhouse systems because 

each group of tomato roots had a fixed nutrient solution content 

delivered by a self-developed timed irrigation and collection 

system.  The average temperature of the greenhouse was 23.26ºC, 

while the humidity was 55.18%. 

We induced five levels of N nutrition stress (25%, 50%, 75%, 

100%, and 150%) to the tomato plants (Table 1).  Yamazaki 

nutrient solution was used for irrigation; the nutrient solution was 

formulated to eliminate NO3 and NH4 without changing the 

concentrations of the other essential elements.  The same trace 

element nutrient solution was supplied to all plants, and consisted 

of: EDTA-Na2Fe 20 mg/L, H3BO3 2.86 mg/L, MnSO4.4H2O  

2.13 mg/L, ZnSO4.7H2O 0.22 mg/L, CuSO4.5H2O 0.08 mg/L, and 

(NO4)6Mo7O24.4H2O 0.02 mg/L.  The solutions were supplied at 

a rate of 500 mL/plant.day for 1 month after transplanting, and 

1000 mL/d·plant for an additional month until harvesting.  

Recommended pesticides (carbendazim, colloidal sulfur suspension 

agent) were used as needed to control greenhouse insects. 
 

Table 1  Tomato nitrogen-stress macro-element solutions                            mg·L-1 

N content Ca(NO3)2 KNO3 (NH4)H2PO4 MgSO4 Complement NaH2PO4 Complement (NH2)2CO3 Complement KCl 

25% 89 101 19 246 60 0 224 

50% 177 202 39 246 40 0 149 

75% 266 303 58 246 20 0 75 

100% 354 404 77 246 0 0 0 

150% 354 404 77 246 0 4 0 
 

2.2  Measurement of polarized spectra data 

The polarization reflectance spectra were collected using a 

device that was specifically designed for leaf bidirectional 

reflectance (BRDF) measurements.  This device was developed 

by the Key Laboratory of Modern Agricultural Equipment and 

Technology[39], Jiangsu University.  The instrument was preheated 
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for more than 1 hour to ensure that the instrument can work 

steadily.  The operating mode of this device, and the BRDF 

measurement principle and angle range, were as described in our 

previous articles[39].  Light from a halogen light source was 

transmitted to an illumination manipulator through an optical fiber 

and produced unpolarized radiation in the VIS-NIR spectrum.  

The spectral range spans 300-1000 nm; spectra were measured in 

0.443 nm intervals, resulting in 1580 measurements.  For each 

sample, the spectral collection was repeated at three points: the leaf 

tip, middle, and bottom, and the average curves were taken as the 

final scan result, to minimize the impact of random errors. 

During the growing period, a total of five spectra were 

collected, corresponding to the five stages of tomato growth: 

seedling stage, flowering stage, initial fruiting stage, mid-fruiting 

stage, and picking stage.  Developing a database of information on 

leaf analysis and fertility practices over time facilitates the 

diagnosis of problems as they occur.  In total, 96 fresh leaves were 

collected for the determination of N and SS content.  To avoid 

unwanted scattering, the laboratory must take dark measures to 

ensure a reflectance of less than 3% in the VIS-NIR spectrum.  

The temperature in the laboratory was maintained at 25ºC and 

relative humidity at 40%.  A white reference panel (Spectralon, 

BaSO4, 99% reflectance) was used under the same conditions to 

convert the spectral reflectance before each test to minimize 

environmental influences, and the scan time was 0.2 s.  The raw 

polarization spectra of N stress samples are presented in Figure 1. 

 
Figure 1  0º Polarization spectra of 96 N nutrition stress samples 

 

2.3  Measurement of hyperspectral data 

Hyperspectral data of tomato leaves were collected by a 

hyperspectral imaging system.  The system was mainly composed 

of a hyperspectral camera (V10E-QE, Spectral Imaging Ltd., 

Finland), a 150 W halogen lamp DC tunable light source (2900-ER 

+9596-E, Illumination Technologies, USA), two-fiber line light 

source (PIN 9145+9530, Illumination Technologies, USA), moving 

stage (MTS120, Beijing Optical Instrument Factory, China), 

controller (SC100, Beijing Optical Instrument Factory, China), and 

computer components.  Before the hyperspectral image data 

acquisition, the exposure time of the visible-near infrared camera 

was determined in advance to ensure that the image was clear and 

the speed of the displacement table was determined to avoid the 

distortion of the image size and spatial resolution.  The exposure 

time was determined after analysis and comparison to be 20 ms, 

and the displacement speed of the displacement table was     

1.25 mm/s.  The spectral range was 300-1000 nm while the 

spectral resolution was 2.8 nm.  The sampling interval was 1.2 nm; 

thus, a single acquisition can obtain 512 independent hyperspectral 

images.  The black and white fields must be calibrated to set the 

reflectivity range before the data acquisition, and then the 

second-order Butterworth filter is used for digital filtering to 

remove noise interference.  

2.4  Chemical measurement 

The chemical content determinations were performed in 

parallel with the spectral test. The leaf samples were picked 

between 9:00 and 12:00 am Beijing local time into numbered 

self-styled bags, then sorted into the professional plant preservation 

box, immediately transported to the laboratory, and then polarized 

reflection spectrum measurement experiments and hyperspectral 

image acquisition were performed.  After collection, the leaves 

were placed in an oven and dried at 80°C until a constant weight 

was achieved.  The total nitrogen content of the samples was 

determined by the Kjeldahl method.  Concentrated sulfuric acid  

(5 mL) was added to each sample, and samples were heated to 

380ºC for 4 h according to the Kjeldahl protocol.  The N content 

of the concentrates was then determined using a continuous flow 

AutoAnalyzer 3 (SEAL Analytical Instruments, USA).  All 

chemical reagents used in the analyses were of analytical grade; 

results were expressed on a fresh-weight basis (mg/g). 

The anthrone colorimetric method was used to determine the 

SS content in the leaves.  0.1 g of fresh plant leaves were placed 

in test tubes, 5 ml of distilled water was added, a plastic film used 

for sealing, and a boiling water bath extraction for 30 min (repeated 

extraction 2 times) was performed.  The extract was filtered into a 

25 ml volumetric flask.  1 ml of the extract was transferred from 

the volumetric flask to the inside of the tube, 0.5 ml of anthrone 

ethyl acetate and 5 ml of concentrated sulfuric acid were added in 

sequence, and the mixed liquid was sufficiently shaken and placed 

in a boiling water bath for 30 min.  After cooling to room 

temperature for 10 min, the absorbance was measured at a 

wavelength of 630 nm.  The SS content was calculated based on 

the standard curve that has been drawn using glucose as a standard 

sample. 

The SS/N is the sugar and nitrogen ratio of the mass fraction 

and is a dimensionless index obtained by dividing the mass fraction 

of soluble sugar SS by the mass fraction of total nitrogen N, and 

multiplying by the conversion factor F according to  

/ 100%
SS

SS N F
N

                 (1) 

2.5  Software and statistical analysis 

All data processing and analysis were performed using 

MATLAB Version 2010a (Mathworks, USA) for Windows 7.  

BRDF analyzer software (Isuzu Optics, Taiwan) was used for the 

acquisition and analysis of raw BRDF spectral data.  ENVIV4.5 

(Research System, Inc, USA) was used for the acquisition and 

analysis of raw hyperspectral data.  The precisions of the model 

and validated model were evaluated with the root mean square 

error of cross-validation (RMSECV), the root mean square error of 

prediction (RMSEP), and the correlation coefficient (R).  Higher 

R, lower RMSECV, and lower RMSEP indicate the higher 

precision and accuracy of a model. 

3  Results and discussion 

3.1  Extraction of optimum polarization degree features 

3.1.1  Plant physiological analysis of polarization reflections 

based on scanning electron microscopy 

In order to show that there is a link between the nutritional 
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stress and the microstructure of the tomato leaves, the surface 

microstructures of the N-deficient and N-excess leaves were 

analyzed by scanning electron microscopy compared to the normal 

leaves.  Figures 2a-2c show the surface microstructures of normal, 

N-deficient, and N-excess tomato leaves at ×200 magnification, 

respectively. 
 

   
a. Control group, ×200 b. N deficiency, ×200 c. N excess, ×200 

 

Figure 2  Scanning electron micrographs of N-stressed leaves 
 

In Figure 2a, the pores can be seen clearly, the blade surface is 

mainly distributed with tapered villi and a small number of 

mushroom-shaped villi, as well as protruding vascular bundles.  

Defensive cells were half-moon shaped, and the cilia stretch well.  

Although the epidermal cells are irregular in shape, they are tightly 

fitted with each other.  Due to the good growth of the chloroplast, 

the corpus cavernous bodies, and the fence tissue, the blade surface 

has a uniform water-like structure, and the mesophyll morphology 

is plump.  Most of the cilia lodged, and the stomas have closed 

due to lack of N (Figure 2b).  Significantly more folds and cracks 

on the surface of the leaf compare to Figure 2a, the epidermal cells 

are dry and contraction because of undernourishment.  The leaf 

looks more withered and scorched.  Figure 2c shows that the blade 

tissue is loose and the folds are obvious, due to the application of 

excess N, resulting in excessive development of the stratum 

corneum and greater thickness than normal leaves.  The incident 

light is reflected by the surface of the object, resulting in 

polarization degree features, which are mainly controlled by two 

factors: the refractive index of the object, and the incident angle.  

The change of polarization parameters caused by the severity of 

nutrient stress of tomato leaves was investigated, and the 

polarization parameters were judged and selected according to the 

following rule: Orthogonal experiments and range analyses were 

performed to verify the optimum angle combination from the 

polarized reflectance parameters.  Optimum angle combination 

experiments were then conducted to fine-tune the optimal 

parameters, which resulted in the following conditions: incident 

zenith angle, 60º; viewing zenith angle, 45°; light source polarizer, 

0º; detector polarizer, 45º; and azimuth, 180º.  The specific 

selection method was as described in our previous articles[39,40]. 

3.1.2  Extraction of polarization degree features 

Since there is significant noise in the hyperspectral spectrum 

below 440 nm and above 950 nm, polarization data from 440-950 nm 

were selected for analysis.  The average polarization spectrum of 

each tomato sample in the 0°, 90°, +45°, -45° direction was 

extracted.  Hence, the polarization degree of each sample was 

calculated at different wavelengths according to the Stokes 

formula[41]: 

       

0 90

90 0

45 45

r l

I I I

Q I I
S

U I I

V I I

 

 
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   
   


    
   
   

   

              

 (2) 

Figure 3 shows the polarization degree for different nutritional 

stresses, in which it can be seen that the polarization degree 

increases with the increase of nitrogen supply level.  The 

polarization degree is maintained at a relatively high level between 

350-680 nm, then the curve suddenly drops at 680-720 nm; the 

near-infrared region shows a lower degree of polarization and the 

curve tends to become flat beyond 720 nm.  The mean values of 

polarization in the five growth stages were correlated with the 

chemical reference value of N, as shown in Figure 4, where a 

distinguishing line of significance level α = 0.01 is shown to 

estimate the probability that the overall parameter may fall within a 

certain interval.  The smaller the value of α, the higher the 

confidence value or confidence level, and interval estimates are 

more reliable.  

 
Figure 3  Polarization degree for different nutritional stresses 

 

 
Figure 4  Correlation analysis between polarization degree and 

N-content of tomato leaves 

app:ds:polarization
app:ds:degree
app:ds:polarization
app:ds:degree
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The specific steps of wavelength extraction are as follows: 

firstly, the sensitive band obtained by correlation analysis was 

divided into several wavelength groups, with each group containing 

10 wavelengths; secondly, each group was sorted to form a subset 

of Ui according to the value of the relevant coefficient; thirdly, the 

band with the largest correlation coefficient was set to Us; finally, 

the bands in Ui were compared with the Us individually, and if the 

correlation coefficients with all the bands in Us were less than 0.8, 

they were selected.  The final results for sensitive wavelengths 

obtained by the method were 380.49 nm, 655.41 nm, 744.48 nm, 

and 850.58 nm. 

3.2  Feature extraction of hyperspectral data 

3.2.1  Extraction of texture features under sensitive wavelengths 

Principal component analysis (PCA) was used to reduce the 

spectral dimension after a 5×5 window median filter was applied, 

and image segmentation at 700 nm, because the difference between 

the background and the leaf at 700 nm was the most pronounced.  

Figure 5 shows images of the first five principal components (PCs) 

of tomato leaves.  The total accumulative contribution rate of variance 

from the top five PCs (PC1, PC2, PC3, PC4, and PC5) was 99.00%, 

which means that the top five scores for the 120 samples can 

explain 99.00% of the raw spectral information from all samples. 
 

 
PC1 PC2 PC3 PC4 PC5 

 

Figure 5  PC images of the first five PCs of the mildly-stressed (N = 75%) tomato leaf 
 

The weight coefficients of the first five principal components 

were calculated and plotted using PCA analysis.  The weight 

coefficients can represent the importance of an indicator item in the 

overall system.  Here, by analyzing the weight coefficient of the 

first five principal components of the N-stressed leaves, the 

maximum absolute value of the weight coefficient can be shown, 

which indicates that these wavelengths contribute most to the 

reaction N-stress.  Figure 6 shows the weight coefficients of the 

N-content of the first five PCs after PCA; the final results for 

sensitive wavelengths were 464.91 nm, 566.29 nm, 696.28 nm, and 

724.66 nm. 

 
Figure 6  Weight coefficient of the N-content of the first five PCs 

after PCA 
 

Eight texture features according to the gray level 

co-occurrence matrices (GLCM) were extracted based on the above 

four sensitive wavelengths: Mean (MEA), Variance (VAR), 

Homogeneity (HOM), Entropy (ENT), Dissimilarity (DIS), 

Angular Second Moment (ASM), Contrast (CON), and Correlation 

(COR).  These texture features are the most representative and 

persuasive in the study of plant nutrient stress[42]. 
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Table 2  Correlation coefficients between texture features and 

N-content at the sensitive wavelengths 

Sensitive 

wavelength 
MEA VAR HOM CON DIS ENT ASM COR 

464.91 nm –0.4558 –0.2483 0.4703 –0.5850 –0.5038 –0.5795 0.6892 0.6798 

566.29 nm –0.3941 0.4420 –0.6772 0.6711 0.4235 0.1034 –0.6028 0.3546 

696.28 nm 0.0971 0.6867 –0.2792 0.4900 0.6578 0.1184 –0.1010 0.2316 

724.66 nm 0.4593 0.5553 –0.5814 0.3862 0.4290 0.5804 –0.5854 0.6840 
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Correlation analysis of the eight features and the chemical 

reference value of N content were implemented, as shown in Table 

2.  The texture features with the highest correlation values were 

chosen for final modelling: VAR696.28, HOM566.29, CON566.29, 

DIS696.28, ASM566.29, and COR724.66.  The correlation values of 

MEA and ENT under four sensitive wavelengths are all below ±0.6, 

non-adoption.  Texture feature is often used as a feature for image 

classification and information extraction when the spectral features 

of ground objects are similar.  It is formed by the repeated 

occurrence of gray distribution in the spatial position.  Therefore, 

there is a certain gray relationship between two pixels separated by 

a certain distance in the image space, that is, the spatial correlation 

characteristics of gray in the image.  Texture features are not 

based on pixel features it needs to be calculated in the area 

containing multiple pixel points.  In pattern matching, this kind of 

regional feature has great advantages and cannot be matched 

successfully because of local deviation.  The correlation values of 

MEA and ENT under four sensitive wavelengths are all below ±0.6 

which illustrate that these two methods have fewer advantages in 

pattern matching and lower matching success rate. 

3.2.2  Optimal reflection spectrum features selected by iPLS-GA 

Figure 7a presents the raw spectra profile of all the samples.  

Raw spectra contained background information and noise in 

addition to the sample information.  Spectral pretreatment is an 

effective mean to overcome spectroscopic instability.  Traditional 

methods of spectral pre-processing include smoothing, derivative, 

standard normal variate transformation (SNV), multiplicative 

scatter correction, Fourier transform, and min/max normalization[43].  

The best performance was shown by SNV, which was thus selected 

for this study.  SNV transformation was performed for each 

spectrum, individually, by subtracting the mean of the spectrum 

and scaling with the standard deviation of the spectrum, as 

illustrated by: 

,SNV
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( ) / ( 1)
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i

n

ii

x x
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x x n
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         (11) 

where, xi,SNV is the SNV transformed spectral value for the ith 

variable; xi is the ith variable in the raw spectrum, and x  is the 

mean of the raw spectrum[44].  The spectra after SNV 

preprocessing are presented in Figure 7b. 

 
   a.                                                 b. 

Figure 7  Raw spectra (a) and SNV preprocessed spectra (b) of tomato leaf samples 
 

The spectral preprocessing method cannot eliminate all the 

invalid information such as instrument noise and sample 

background noise contained in the original spectrum; therefore, it is 

necessary to optimize the independent variables and extract the 

effective information from the redundant data.  Hence, the 

reduced model predictive ability and robustness will be enhanced.  

In this study, we used an interval partial least squares-genetic 

algorithm (iPLS-GA) to optimize the variables.  The most 

prominent advantage of the iPLS approach is to find out the most 

relevant intervals for the quality of the test[45].  The GA simulates 

the natural genetic mechanism and natural selection of the 

biological world and is more suitable for solving complex, 

nonlinear optimization problems[46].  The sensitive wavelengths of 

the N were found to be 741.48 nm, 755.74 nm, 767.44 nm, and 

784.37 nm using iPLS-GA. 

3.3  Model calibrations 

All 96 samples for each nutrient element were randomly 

divided into two subsets: a calibration set, used to build the model, 

and a prediction set, used to test the robustness of the model.  To 

avoid bias in the division of the subsets, the division was 

performed as follows: all samples were sorted according to their 

respective y-value (the measured reference value of N and SS 

content).  Two abnormal samples were removed according to the 

Mahalanobis distance.  To reach a 2/1 division of 

calibration/prediction spectra, one spectrum from every three 

samples was added to the prediction set, so that the final calibration 

set contained 80 spectra and the remaining 40 spectra constituted 

the prediction set.  The range of y-values in the calibration set 

covered the range in the prediction set; therefore, the distribution of 

the samples was appropriate (Table 3). 
 

Table 3  Reference measurement results for samples 

Nutrients Units Set S.N.
a
 Range Mean S.D.

b
 

N 
% Calibration set 70 3.40-8.08 5.37 2.35 

% Prediction set 35 3.85-7.92 5.29 2.21 

SS 
% Calibration set 70 0.81-7.59 4.02 2.69 

% Prediction set 35 0.92-7.08 3.93 2.47 

Note:
 a
 S.N.: sample number.  

b 
S.D.: standard deviation. 

 

A total of 14 feature variables were used for modeling, 

including 4 polarization degree features at 380.49 nm, 655.41 nm, 

744.48 nm, and 850.58 nm; 6 texture features (VAR696.28, HOM566.29, 

CON566.29, DIS696.28, ASM566.29, and COR724.66), and 4 reflection 

spectrum features at 741.48 nm, 755.74 nm, 767.44 nm, and  

784.37 nm.  

Linear models (Multiple Linear Regression (MLR)[47] and 

Partial Least Squares (PLS)), and nonlinear models (Support 

Vector Machine (SVM)[48] and Back propagation Artificial Neural 

Network (BPANN)[49]) were both applied comparatively in model 

calibration.  From the results for predicting N, the best data fusion 

model was achieved by BPANN with Rc = 0.9845, RMSEC = 

0.1031, and Rp = 0.9400, RMSEP = 0.1995.  Figure 8a illustrates 

the predicted and measured values of N for the calibration and 

prediction sets using BPANN.  Among the SS results, the best 

data fusion model for prediction was also achieved by BAPNN 

with Rc = 0.9845, RMSEC = 0.2893, and Rp = 0.9315, and 

RMSEP = 0.5559.  Figure 8b illustrates the predicted and 
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measured values of SS for the calibration and prediction sets using 

BPANN.  After normalization and optimization, the best data 

fusion model for SS/N prediction was achieved by SVM with Rc = 

0.9679, RMSEC = 0.0077, and Rp = 0.9466, RMSEP = 0.0259, 

and corresponding to C = 16 and g = 0.5.  Figure 8c shows the 

predicted and measured values of SS/N for the calibration and 

prediction sets using SVM.  As investigated from the results, the 

six models performed well in the prediction of N, SS, and SS/N 

while using the data fusion as the model input. 

 
a. 

 
b. 

 

c. 

Figure 8  (a) Reference determination versus of calibration (*) and 

prediction (ο) set data of BP-ANN model of N. 

(b) Reference determination versus of calibration (*) and prediction 

(ο) set data of the BP-ANN model of SS. 

(c) Reference determination versus of calibration (*) and prediction 

(ο) set data of the SVM model of SS/N 
 

3.4  Discussion  

The combination of polarization reflectance spectra and 

hyperspectral data analysis was systematically studied in this work 

and achieved a good performance in quantitatively measuring 

nutrition in tomato leaves, compared with the individual results of 

the two systems.  The detailed discussion of the results can be 

summarized as follows. 

Regarding the effect of different nitrogen levels on SS 

accumulation, the five growth cycle stages of the tomato plant 

correspond to different nitrogen gradient levels, and many other 

elements and trace elements are normally supplied.  The 

distribution of SS content in each growth cycle was analyzed and 

some conclusions can be drawn.  Firstly, with the continuous 

growth of tomato plants, the accumulation of SS showed a steady 

growth trend.  Studies have shown that tomato SS gradually 

increases in the mid-term and harvest period, especially glucose 

and fructose, and reaches the highest level at maturity.  This may 

be related to the change of sucrase activity, because it is reported 

that the sucrase activity is gradually increased with the 

development of the fruit, and reaches a maximum, resulting in the 

strongest hydrolysis of sugar[50].  Secondly, in one of the five 

growth cycles, the SS content showed a gradual decrease with the 

increase of nitrogen application rate.  In short, the amount of 

nitrogen applied was negatively correlated with the content of SS in 

tomato leaves.  This is not consistent with the report of Li 

Yuanxin, whose study showed that nitrogen fertilizer can increase 

the tomato SS content[51].  This is because the object of Yuanxin’s 

detection was tomato fruit, while the object of this study is the leaf.  

After the fruit is developed, the fruit is a strong metabolic pool, and 

the leaves need to transport more SS to the fruit.  This result is 

consistent with Wang Li's study, which pointed out that the content 

of SS in the leaves decreased rapidly 25 days after the flowering 

time and early fruiting period[50].  Moreover, in the early stage of 

nitrogen deficiency, plant leaf color is not very different from the 

naked eye, making it difficult to distinguish whether the virus is 

infected only with color characteristics[52].  Texture parameters, 

such as ENT, CON, and HOM, may change according to leaf 

microstructure structure and color shading in the canopy[42].  

However, the image and reflectance spectra cannot be fully 

captured at the early stage when the leaf changes are not obvious.  

The degree of polarization calculated by the scanning polarization 

reflected light contains information related to the surface and inner 

layer of the leaf[28,53].  In this study, polarization detection is 

regarded as an effective supplement, and it is believed that 

polarization measurement can obtain some information that cannot 

be obtained by traditional intensity measurement, and thus can 

effectively improve the model accuracy. 

The limitations of computer vision technique to evaluate 

nutrition deficiency in tomato leaves lead to the idea of introducing 

a fusion technique by combining data from two systems, which 

considers texture, morphology as well as color features. 

Finally, in order to highlight the efficiency of the data fusion 

methodology proposed in this study, models calibrated with 

separate data sources were compared.  Table 4 shows the results 

from the separate features and models of data fusion for N, SS, and 

SS/N.  In this table, Mp, Mt, and Mr represent models built by 

polarization degree features, texture features, and reflection 

spectrum features, respectively.  Mp+Mt+Mr represents the data 

fusion model.  The best model from each separate feature (Mp, Mt, 

and Mr) is also shown in Table 4, they conducted all the 

possibilities and found the optimum combination.  It can be 

observed that the data fusion models achieved better performance 

than the separate feature models, regardless of the linear model 

(MLR, PLS) or the nonlinear model (SVM and BPANN).  In 

addition, the SS/N models obtained sharply increased predictive 
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accuracy.  This proved that the information extracted from the 

polarized spectrum, reflection spectrum, and texture data, were 

mutually complementary, and the models could provide better 

results.  In addition, among the models based on data fusion, the 

results did not have significant differences take N, SS, or SS/N into 

consideration separately. 
 

Table 4  Evaluation of the data fusion models 

Models Methods 

N SS SS/N 

RC RMSEC RP RMSEP RC RMSEC RP RMSEP RC RMSEC RP RMSEP 

Mp PLS 0.9283 0.5426 0.9087 0.7465 0.6922 1.1527 0.6426 1.2392 0.7402 1.2552 0.7046 1.3085 

Mt MLR 0.9633 0.3832 0.9183 0.4525 0.9321 0.3216 0.7937 0.7965 0.8797 0.8202 0.8207 1.4568 

Mr MLR 0.9044 0.6524 0.8678 0.9817 0.8848 1.1598 0.7510 1.8761 0.7128 1.5964 0.5584 1.5507 

Mp + Mt + Mr MLR 0.9624 0.5006 0.9373 0.5448 0.9483 0.5205 0.9142 0.6139 0.9378 0.1211 0.9315 0.1734 

Mp + Mt + Mr PLS 0.9434 0.5161 0.9310 0.5921 0.9074 0.6838 0.9075 0.6544 0.9351 0.1236 0.9307 0.1738 

Mp + Mt + Mr SVR-GS 0.9562 0.1166 0.9291 0.2217 0.9520 0.0047 0.9147 0.0068 0.9679 0.0077 0.9466 0.0259 

Mp + Mt + Mr SVR-PSO 0.9521 0.1268 0.9289 0.2215 0.9389 0.0061 0.9136 0.0068 0.9663 0.0081 0.9422 0.0285 

Mp + Mt + Mr BP-ANN 0.9845 0.1031 0.9400 0.1995 0.9845 0.2893 0.9315 0.5559 0.9859 0.0585 0.9254 0.1794 
 

This combination of two sets of data could produce different 

responses and may provide further information.  Thus, the data 

fusion technique of different modalities[54] could provide better 

information compared to a single modal system.  If the 

eigenvector is too large, the running time and effort of the fusion 

system will be affected.  Nowadays, there are many information 

resources and the requirement of information processing ability is 

increasing.  Data fusion technology can help people deal with 

complex information processing and judgment, and has high 

precision, practicability and feasibility. 

4  Conclusions 

This paper proposed a novel data fusion methodology of 

feature variables for an advanced instrumental measurement of 

plant physiological indexes.  N, SS, and SS/N in tomato leaves 

were used to verify the feasibility of this methodology.  The 

proposed data fusion methodology showed obvious superiority in 

both predictability and stability of models in contrast to traditional 

methodologies.  It can be concluded that this method is not as 

limited by traditional computer vision and spectroscopy technology, 

especially regarding the poor accuracy of the type of nutrition 

determination.  It provides a theoretical basis for the establishment 

of a more precise automatic greenhouse system and promises to be 

significant in the development of precision agriculture technology. 
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