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Abstract: To realize the robotic harvesting of Hangzhou White Chrysanthemums, the quick recognition and 3D vision 
localization system for target Chrysanthemums was investigated in this study.  The system was comprised of three main stages.  
Firstly, an end-effector and a simple freedom manipulator with three degrees were designed to meet the quality requirements of 
harvesting Hangzhou White Chrysanthemums.  Secondly, a segmentation based on HSV color space was performed.  A fast 
Fuzzy C-means (FCM) algorithm based on S component was proposed to extract the target image from irrelevant background.  
Thirdly, binocular stereo vision was used to acquire the target spatial information.  According to the shape of Hangzhou White 
Chrysanthemums, the centroids of stamens were selected as feature points to match in the right and left images.  The 
experimental results showed that the proposed method was able to recognize Hangzhou White Chrysanthemums with the 
accuracy of 85%.  When the distance between target and baseline was 150-450 mm, the errors between the calculated and 
measured distance were less than 14 mm, which could meet the requirements of the localization accuracy of the harvesting 
robot. 
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1  Introduction  

In recent years, the demand for tea drinks is in gradually 
increasing.  As a kind of tea beverage, Hangzhou White 
Chrysanthemum is popular because of its health benefits.  In 
China, the planting area of Hangzhou White Chrysanthemums is 
expanding every year.  The birthplace of Hangzhou White 
Chrysanthemums is Tongxiang city of Zhejiang Province, where 
the planting area is nearly 4000 hm2[1], and the output is around 
12 000 kg/hm2.  In order to ensure the quality, the harvesting 
period is usually 25 d[2,3].  Due to short flowering period and high 
quality requirements, the process of harvesting not only needs a 
large number of labor forces but also becomes one of the most 
difficult tasks to realize the mechanization.  At present, the whole 
process of harvesting is carried out by manual operation, which is a 
time-consuming and labour-intensive procedure[4].   

Agricultural robot technology could reflect the agricultural 
mechanization level, which is an important symbol of a nation 
agricultural modernization level[5].  The automatic recognition by 
computer vision for fruits and vegetables is receiving an increasing 
attention[6-8].  In the agricultural sector, computer vision has been 
applied in many aspects, e.g., the recognition of fruits and 
vegetables[9,10].  Kondo et al.[11] proposed a target identification 
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method by analyzing the color difference between targets and 
background.  This method identified tomatoes with an average 
accuracy of 70.0%.  However, the target covered by leaves cannot 
be accurately identified.  In the same way, Arefi et al.[12] 
developed an algorithm for removing the background by R-G, 
which could make tomatoes be highlighted from irrelevant 
background, and achieve the target localization by morphological 
characteristics.  In order to recognize occlusion targets, Wang[13] 
proposed a new algorithm based on selective cross correlation 
coefficients to search images under partial occlusion.  Sun et al.[14] 
found that multi-scale retinex with color restore can effectively 
enhance the cucumber images under various natural lighting 
conditions, and the overlap targets can be recognized with the rate 
of 98.91%.  However it had a long processing time and could not 
meet the requirement of real-time to harvesting robots. 

Modern automation technology is the key to realize precision 
farming operations[15].  Fusing depth information with 2D image 
information is a better approach to realize automatic harvesting[16].  
Current crop positioning methods are mainly based on monocular 
camera system, laser range-finding method and binocular stereo 
vision system to acquire depth information[17,18].  Mehta and 
Burks[19] proposed an inexpensive perspective transformation- 
based range estimation method, which got the spatial information 
of citrus based on a monocular camera.  Li et al.[20] designed a 
system based on binocular stereo vision, which used cancroids of 
apples to improve the localization accuracy of harvesting.  Xiang 
et al.[21] used a similar scheme for locating tomatoes, the depth 
maps was be used to recognize clustered tomatoes.  In this system, 
the recognition accuracy rate of clustered tomatoes was 87.9% 
when the occlusion rate was less than 25%.  The above mentioned 
methods using cameras as the main sensing devices show the trend 
of being affected by illumination variations, which would decrease 
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the accuracy of localization.  To avoid or reduce the influence of 
natural lighting conditions, Jimenez et al.[22] used a laser-based 
computer vision system to detect fruit.  In this system, range and 
reflectance images which were produced by infrared laser 
rangefinder sensor were applied to detect spherical targets  
under various illuminations conditions.  Feng et al.[23] designed 
laser vision system to acquire apple’s 3D position, this system 
used a laser range-finder to collect distance information when  
the harvesting robot moved horizontally.  Although the position 
accuracy of this system was less than 5 mm, it increased 
complexity during data acquisition and cost more harvesting  
time.   

As mentioned above, many studies focused on detecting 
various kinds of fruits and vegetables.  However, little research is 
available about Hangzhou White Chrysanthemums harvesting robot.  
Therefore, this study conducted some related researches on the 
robot for harvesting Hangzhou White Chrysanthemums.  In HSV 
color space, the S component can make flowers prominent from 
background.  The fast FCM algorithm based S component was 
proposed to segment images.  Binocular stereo vision just 
analyses two images to acquired 3D information and does not have 
other mechanical time-consuming problems.  Thus, binocular 
stereo vision was used to acquire spatial information about 
Hangzhou White Chrysanthemums.  In order to improve the 
accuracy, three kinds of constraints were added in the process of 
localization. 

2  Materials and methods 

2.1  Sample preparation 
In this research, 200 Hangzhou White Chrysanthemum images 

were acquired by Sony DSC-T9 digital camera (CCD, 6 million 
pixels, resolution of 2816 × 2112) in Tongxiang city of Zhejiang 
Province.  The images were stored in JPG format and their size 
was 720×480 pixels.  In outdoor, the process of harvesting was 
probably taken place in different illuminations.  So the images 
were captured in different time periods (8:00, 13:00 and 17:00).  
Meanwhile, Matlab2014b was used to segment images.  The 
localization equipment consisted of the Basler acA2500-14gm 
binocular camera (a lens resolution, 668×648, 1/4 CMOS, focus 
length of optical lens, 3.6 mm), a image acquisition card with two 
channel and a laptop (intel® Core (TM) i5, CPU 2.40 GHz, 4 G 
ARM, Windows 7 operating system).   
2.2  Composition and working principle of the harvesting 
robot 
2.2.1  Overall design of mechanical system of harvesting robot 

According to growth characteristics of Hangzhou White 
Chrysanthemums in the ridge, the mechanical structure was 
independently designed.  It is mainly composed of seven parts: 
mechanical arm, three axes (Y, X, Z) moving guide rails, 
end-effector, motion control system and vision system, as shown in 
Figure 1. 

The workflow of the robot is as follows: the robot moves 
automatically along the path, and the binocular stereo camera 
acquired images.  Once images were acquired, images 
segmentation and stereo location were performed by vision system.  
According to the spatial coordinates of flowers, the mechanical arm 
was guided to the location of targets.  The flowers would be 
picked by end-effector.  After all flowers were picked, the robot 
stops working.  The workflow of the chrysanthemum harvesting 
robot was shown in Figure 2.   

 
1. PC  2. Motion control system  3. Image acquisition card  4. Camera 1       
5. Camera 2  6. Y-guide rail  7. X-guide rail  8. Z-guide rail  9. End-effector    
10. Crawler walking mechanism  11. Bracket  

Figure 1  Overall frame of Hangzhou White Chrysanthemums 
harvesting robot 

 
Figure 2  Workflow of the chrysanthemum harvesting robot 

 

2.2.2  End-effector of harvesting robot 
The end-effector consists of clamping mechanism, suction 

nozzle and air cylinder, as shown in Figure 3.  The clamping 
mechanism is made up of two globoid claws which were installed 
with the distance of 30 mm.  The suction nozzle was adopted to 
cut  flowers,  it  can  avoid  destruction  to  other  flowers  during 

 
1. Suction nozzle  2. Air cylinder  3. Supported plate  4. Pneumatic gripper  
5. Left finger  6. Right finger  7. Right globoid claw  8. Left globoid claw 

Figure 3  End-effector for Hangzhou White Chrysanthemums 
harvesting robot 
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a. First stage           b. Second stage          c. Third stage 
Figure 4  Sketch map for the movement of end-effector 

 

clamping process.  The processing architecture of picking flowers 
consists of three stages.  In the first stage as shown in Figure 4a, 
the end-effector was guided to the picking position and the claws 
closed.  There was a round hole with diameter of 10 mm in the 
middle of claws.  In the second stage as shown in Figure 4b, the 

claws opened and the suction nozzle would hold the surface of 
flower stamen.  Then the target would be separated from cluster of 
flowers.  In the third stage as shown in Figure 4c, elbow type gas 
claws drove two globoidal claws to close.  Finally, the flower 
would be picked.   
2.2.3  Control system of harvesting robot 

According to the function requirements, the control system is 
divided into visual control module, motion control module and 
executive control module.  As shown in Figure 5, signals were 
collected by cameras and external sensors which are made up of 
nine positive and negative limit switches.  The image acquisition 
card and the data acquisition card were combined with collected 
signals to record the peripheral information.  In the control system, 
the multiple-axis motion control card (Advantech PCI-1240U) was 
used to control the motion.   

 
Figure 5  Hardware frame diagram of the motion control system of the chrysanthemum harvesting robot 

 

3  Targets recognition and localization method  

3.1  Image segmentation 
3.1.1  Model of S component 

Although, RGB color model is the primary one, the main 
purpose of RGB color model is just for the sensing, representation 
and display of images in electronic systems, such as televisions and 
computers[24].  The HSV color space, proposed by Smith in 
1978[25], reflects the intuitive nature of color with H (Hue),       
S (Saturation) and V (Value).  According to the definition of 
saturation, it can be known that bright color generally has a high 
value of saturation.  In this research, due to the fact that color of 

Hangzhou White Chrysanthemum is bright, the S component can 
be used for segmentation.  As shown in Figure 6b, it can be 
clearly seen that stamens of flowers have a high partition degree 
from the background.  As shown in Figure 6c, after normalizing 
the values of S component, it can be found that one part whose 
value was greater than 0.75 belongs to the stamen, another part 
whose value was less than 0.18 belongs to the petal.  The Figure 
6d showed that there were three obvious peaks.  It means that 
most value of pixels mainly belong to three peaks in this image, 
which was helpful to use the fast FCM clustering algorithm to 
segment images. 

 
        a. Original image           b. Comparison of pixels in S component      c. Gray image of S component            d. Histogram of S component 
 

Figure 6  Analysis of S component in Hangzhou White Chrysanthemums 
 

3.1.2  Fast FCM clustering algorithm based on S component 
It can be found that there were too many pixels have the same 

saturation value.  If each pixel was used as a clustering sample 
datum, the sample data would become a redundant set, which will 
increase unnecessary calculation and affect the computational 

efficiency.  In order to solve this problem, the fast FCM clustering 
algorithm was proposed in this study.  In this method, the S 
component was mapped into gray space, in which the frequency of 
pixel in each grayscale would be counted as the sample data.  The 
value objective function was as followed: 
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where, L is the grayscale of the clustering sample data; c is the 
category of clustering; uik is the membership degree of the k-th 
grayscale which belongs to the i-th category; ω(κ) is the frequency 
of pixel in k-th grayscale; m is the weighted index (m>1); U is the 
membership matrix and V is the clustering center matrix; Dik is the 
square of Euclidean distance from the k-th grayscale to the vi (the 
i-th clustering center), it can be calculated by the following 
formula: 
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The minimum value of the value objective function was 
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3.1.3  Realization of image segmentation algorithm 
As shown in Figure 7, the process of images segmentation was 

performed in three main parts.  Firstly, the RGB image was turned 
into HSV color space, and S component of image was extracted.  
Then, the frequency of pixels in each grayscale was as the sample 
data to cluster.  The number of grayscale was determined as 256 
because it can ensure the correctness of clustering.  Finally, the 
method of morphological processing was used to reduce noises 
after clustering. 

 
Figure 7  Flowchart of segmentation for Hangzhou White 

Chrysanthemums 
3.2  Stereo matching 

Stereo matching was performed to obtain depth information of 
Hangzhou White Chrysanthemums after image segmentation.  
According to the description way of images, stereo matching 
algorithm can be divided into regional, feature and phase matching 
algorithms[26].  In this research, the stamen shape is generally 
quasi-circular, and its centroid will not change in the case of 
rotation, zoom and translation.  Therefore, it was a better choice to 
adopt the feature matching algorithm in this study, and the 
stamens’ centroid was selected as a pair of matching points in the 
right and left images.  The nature of stereo matching is 
establishing the correspondence and calculating the parallax for 
feature points.  Each feature point only has one specific point to 
match theoretically.  In fact, one feature point probably has more 
than one point or has no point to match due to the effect of the 
surroundings and target attitude.  In order to improve the 

anti-interference ability and matching efficiency, some matching 
constraints were added in the process of stereo matching.  
According to the characteristics of Hangzhou White 
Chrysanthemums, this research was applied with three kinds of 
constraints (epipolar constraint, uniqueness constraint, disparity 
gradient constraint) to match targets in the left and right images. 
3.2.1  Acquisition of feature points 

The first step of matching was extracting feature points.  The 
method of region segmentation was used to label a gray image into 
several connected regions, in which the y-coordinate value of 
centroids could be expressed as the ratio of the sum of 
y-coordinate’s value of all pixels and the number of all pixels, the 
x-coordinate’s value of centroids could be expressed as the ratio of 
the sum of x-coordinate’s value of all pixels and the total number of 
all pixels, i.e.: 
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where, (X, Y) were the centroid coordinates of a connected region 
and n was the total number of pixels in a connected region. 
3.2.2  Matching rules 

The epipolar constraint states that the matching point must fall 
on epipolar line in the image.  So the search range could be 
converted from two-dimensional space to one-dimensional space 
during the process of matching.  Therefore, the epipolar constraint 
was usually used to improve the matching efficiency.  The unique 
constraint means that one feature point in image IA can only match 
one feature point in image IB.  It was obvious that the centroid of 
flower is unique, which satisfies the condition of unique constraint.  
In addition to the above two constraints, the disparity gradient 
constraint was generally used to reduce the possibility of mismatch.  
The disparity gradient constraint refers to the relative parallax of 
two matching points.  Supposing that A and B were any two points 
in the three-dimensional space.  The coordinates of two points in 
left image were A1=(axl, ay), B1=(bxl, by).  The coordinates of two 
points in right image were Ar=(axr, ay) and Br=(bxr, by).  The 
separation degree of one eye was:                                     
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The matching parallax between A and B points: 
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Due to the fact that cameras were installed horizontally, the 
y-coordinate’s values of two points were same theoretically.  The 
gradient parallax was: 
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Normally, the matching constraint for disparity gradient was: 
τ(A, B)≤1. 
3.2.3  Realization of the matching algorithm 

Firstly, Hangzhou White Chrysanthemums images were 
collected by the binocular cameras.  The fast FCM algorithm 
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based on S component was used to segment images.  Then, the 
centroid coordinates of stamens were calculated.  According to the 
given constraints, the feature points in left and right images were 
matched.  The detailed steps for matching were as followed: 

1) The centroid coordinates of stamens were extracted in the 
right and left images. 

2) The epipolar constraint was used to search matching point in 
the epipolar line.   

3) The mismatching points would be eliminated by unique 
constraint. 

4) The disparity gradient constraint was used to make sure that 
each matching point stays within the range of threshold. 

5) Matching completely. 
3.3  Target location 

The X-Z plane of binocular vision system is shown in Figure 8.  
The depth information of Hangzhou White Chrysanthemums could 
be obtained by simple triangulation calculations.  Suppose the 
three-dimensional coordinates of point P were (X, Y, Z), and its 
coordinates in the left and right camera were (xl, yl) and (xr, yr).  
So the three-dimensional coordinates of the P point were as 
follows: 

l

l r

l

l r

l r

bxX
x x
byY

x x
bfZ

x x

⎧
=⎪ −⎪

⎪⎪ =⎨
−⎪

⎪
=⎪

−⎪⎩

    

               (9) 

where, d = xl  – xr was the binocular parallax of point P, Z was the 
target depth, baseline length b and lens focus f were the camera 
internal parameters and they were obtained by cameras calibration.   

The three-dimensional coordinates could be calculated and the 
location for targets could be realized directly after calibrating 
camera and calculating parallax of matching points. 

 
Figure 8  Sketch map of depth calculation 

4  Experiment and results 

4.1  Image segmentation  
Hangzhou White Chrysanthemums harvesting robot usually 

works in the outdoor environment, where the illumination 
condition is varied.  In order to verify the robustness of the 
proposed algorithm, 160 images were acquired in different 
illumination conditions.  Among these images, 80 images were 
acquired in the condition of direct light, and the rest of images were 
acquired in the condition of backlighting.  Each image 
approximately contains 10-35 flowers.  The fast FCM algorithm 
based on S component was used to segment images.  The number 
of clustering centers was three (c=3), and the fuzzy membership 

index was 1.8 (m=1.8), ξ=0.001.  Figures 9 and 10 show the 
segmentation results in different illumination conditions.   

 
 a. Original image                b. Final segmentation image 

Figure 9  Segmentation result of image captured in direct light 
condition 

 
     a. Original image                b. Final segmentation image 

Figure 10  Segmentation result of image captured in backlighting 
condition 

 

The segmentation results showed that mature Hangzhou White 
Chrysanthemums could be extracted under in both conditions.  
Particularly under direct light condition, the shadow of other 
objects was projected on a portion of Hangzhou White 
Chrysanthemums, which causes the color of targets is uneven.  It 
could be seen that stamens would be segmented completely from 
complex background.  Thus, the proposed methods can effectively 
reduce illumination interference.  The partial experimental data 
were shown in Table 1. 

 

Table 1  Experimental data of segmentation 

Illumination 
conditions

Sequence 
number

Clustering time of the  
fast FCM algorithm  
based S component/s 

Clustering time of 
FCM clustering 

algorithm/s 

Recognition 
rate 

1 0.318 6.437 97% 

2 0.656 9.541 84% 

3 0.513 11.169 75% 

4 0.618 6.522 86% 

5 0.266 7.001 83% 

6 0.079 5.764 94% 

7 0.246 6.407 88% 

8 0.438 5.479 82% 

9 0.253 7.242 79% 

Direct light

10 0.357 7.900 92% 

1 0.236 10.745 92% 

2 0.226 4.881 78% 

3 0.405 4.691 80% 

4 0.385 4.502 76% 

5 0.304 3.645 82% 

6 0.539 6.569 90% 

7 0.459 7.528 80% 

8 0.487 5.328 85% 

9 0.412 5.774 91% 

Backlight

10 0.543 7.670 87% 
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As shown in Table 1, under the condition of backlighting, the 
average time for fast FCM algorithm based on S component was 
about 0.40 s and traditional FCM algorithm was performed about 
6.31 s.  In the condition of direct light, the average time for fast 
FCM algorithm based on S component was about 0.34 s and 
traditional FCM algorithm was performed about 7.34 s.  It can be 
obviously seen that the proposed algorithm reduce calculation time 
and it is suitable for precise agriculture on the aspect of time 
consuming.  The average segmentation rate was about 85%, 
which showed that the fast FCM algorithm based on S component 
had better precision and efficiency.  Thus, the fast FCM algorithm 
based on S component could provide the foundation for Hangzhou 
White Chrysanthemums localization. 
4.2  Matching experiment 

To verify the feasibility of matching algorithm, 214 groups of 
feature points which are contained in 50 groups of images were 
tested.  The matching result of a pair of images is shown in Figure 
11, and its coordinates of centroids are shown in Table 2.  The 
statistical results are shown in Table 3. 

 
a. Left image  b. Right image 

 

Figure 11  Matching results of Hangzhou White Chrysanthemums 
images 

 

Table 2  Matching data in the left and right images 
Sequence 
number of  
matching 
pairs in  

left image 

Centroid  
coordinates of  

stamens  
in left image 

Sequence 
number of  
matching 
pairs in 

right image 

Centroid  
coordinates of  

stamens in  
right image 

Vertical 
difference

1 (98.6199, 241.4368) 2 (236.6089, 240.5801) 0.8567
2 (121.9001, 89.2998) 5 (337.3588, 89.5506) 0.2508
3 (137.3242, 23.4778) 3 (280.5573, 22.8972) 0.5806

 

Table 3  Partial data of matching experiment 
Sequence 
number 

Centroid coordinates of 
stamens in the left image 

Centroid coordinates of 
stamens in the right image 

Vertical 
difference

1 (42.9954, 142.2842) (172.6399, 141.7188) 0.5654 

2 (93.2955, 262.4844) (230.4924, 262.2943) 0.1901 

3 (151.6186, 278.8273) (279.4971, 178.0235) 0.8039 

4 (211.6241, 16.0160) (355.1209, 14.7451) 1.2709 

5 (54.0114, 148.4904) (268.6205, 148.3781) 0.1123 

6 (155.9964, 264.2994) (163.0363, 264.6331) 0.3337 

7 (143.8038, 51.4343) (274.222, 51.3199) 0.1144 

8 (152.5212, 162.2550) (304.7002, 161.7888) 0.4662 

9 (112.1050, 155.9637) (346.7633, 156.4790) 0.5153 

10 (101.2651, 29.4024) (234.2893, 29.7513) 0.3489 

11 (120.1847, 136.5568) (275.1294, 136.2110) 0.3458 

12 (23.7048, 33.6587) (168.8890, 33.1332) 0.5255 

13 (103.1051, 214.1551) (308.2179, 214.0470) 0.1081 

14 (93.7127, 278.4614) (230.0426, 277.5357) 0.9257 

15 (157.6285, 269.6359) (286.0317, 268.3088) 1.3271 

16 (226.1673, 276.0041) (353.3297, 277.1026) 1.0985 

17 (69.4450, 136.2408) (199.4927, 136.1004) 0.1404 

18 (154.1309, 238.0212) (289.8284, 237.4907) 0.5305 

19 (213.8458, 238.1360) (341.8059, 237.3450) 0.7910 

Table 3 shows that there was error in matching experiment and 
the maximum difference between the y-coordinates of centroids 
was 1.3271 pixels.  Through analyzing the experiment, the error 
was probably caused by many aspects, such as hardware system 
errors, camera calibration errors, feature extraction errors and 
stereo matching errors, etc.  In the actual operation, accurate 
position measurement between two cameras was very difficult.  
Supposing that the coordinate system of left camera was 
completely accurate, the coordinate system of right camera would 
also inevitably have a certain deviation in the position and direction, 
which will cause errors in the process of cameras calibration.  
However, the little error cannot affect the positioning accuracy 
which can be ignored in complex environment.  In this experiment, 
Hangzhou White Chrysanthemums were successfully matched with 
the rate of 85%. 
4.3  Localization experiment 

After obtaining pixel coordinates of feature points, extracting 
its spatial coordinates played an important role in the process of 
harvesting Hangzhou White Chrysanthemums successfully.  
Localization experiment was performed under indoor conditions.  
The sun would be used as light source during the day.  In the 
evening, two fluorescent lamps would be used as light source.  
The experimental environment is shown in Figure 12. 

 
Figure 12  Experimental environment 

 

In this experiment, 12 targets whose depths were 50-600 mm 
were tested.  The actual distances between targets and reference 
points were recorded by laser range finder.  The absolute value of 
AE=d1–d2 was defined as absolute error to judge the localization 
accuracy.  Figure 12 shows the correlation between the actual 
distance and the absolute error.  Some experimental data are 
shown in Table 4. 

 

Table 4  Experimental data of space localization 

Baseline 
b/mm 

Focal  
distance 

f/mm 

Actual 
distance  
d1/mm 

Calculation 
distance 
d2/mm 

Absolute 
error  

AE/mm 

Relative 
error RE

52.3 56.24 3.94 7.53% 

81.5 86.03 4.53 5.56% 

132.2 135.43 3.23 2.44% 

180.5 184.40 3.90 2.16% 

208.5 212.62 4.12 1.98% 

234.5 230.24 4.26 1.82% 

305.6 311.98 6.38 2.09% 

330.6 334.72 4.12 1.24% 

382.2 386.44 4.24 1.11% 

423.7 426.96 3.26 0.61% 

458.9 461.71 2.81 0.51% 

480.5 484.19 3.69 0.77% 

525.3 545.75 20.45 3.89% 

48.49 3.6 

579.5 615.43 35.93 6.20% 
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It can be seen that when the measuring distance was 150-  
450 mm, the distance error would fluctuate between ±7 mm.  In 
Figure 13, it can be obviously seen that error changes along with 
distance.  And there was a sharp increase in the vicinity of    
500 mm.  The reason which causes sharp increase is that 
Hangzhou White Chrysanthemums would become smaller in 
captured images when the actual distance more than 500 mm, a 
minimum error causes a great deviation to the localization result.  
Therefore, the proposed algorithm can effectively locate targets in 
the range from 150 mm to 450 mm, which can perfectly meet 
requirements of real-time and accuracy to the harvesting robot. 

 
Figure 13  Diagrams between the actual distance and the absolute 

error 
 

4.4  System performance experiment 
The purpose of this experiment is to test whether the picking 

robot system can automatically capture targets.  The objects of 
this experiment are ripe chrysanthemum flowers which are located 
in 10 different directions.  This experiment was carried out in two 
time periods.  The first group was carried out in 13:00, the second 
group was carried out in 16:00.  Each group was tested for 50 
times.  The experiments data are shown in Table 5. 

 

Table 5  Statistics of successful rate of picking robot 

No. Total Number of  
picked flowers

Successful  
rate 

Average working 
time/s 

The first group 50 45 90 14 

The second group 50 43 86 15 
 

The performances of picking system were basically same 
under two different light intensities.  The average time from 
mechanical arm start-up to picking chrysanthemum was 14.5 s,  
and the average success rate was 88%.  The failure could be 
attributed to: (1) The growing posture of some flowers was incline, 
which lead to incomplete recognition of flowers in the visual 
system.  (2) The difference between the motion trajectory 
calculated by the proposed algorithm and the actual positions. 

5  Conclusions 

A recognition and location system for Hangzhou White 
Chrysanthemums harvesting robot was designed independently in 
this study.  Four experiments were performed to validate the 
proposed methods.  According to experimental results, the 
following conclusions can be made: 

(1) In the aspect of flowers segmentation, a fast FCM 
algorithm based on S component was proposed in this study.  The 
frequency of pixels in every grayscale was used as the sample data 
set, which can avoid redundant computing.  The results showed 
that this method could segment images with the recognition 
accuracy of 85%.  Meanwhile, the recognition time was also 

greatly shortened.  The average time of processing a 640×480 
pixels image was 0.4 s.   

(2) According to the shape of Hangzhou White 
Chrysanthemums, feature matching method based on centroid was 
adopted, and centroid was used as feature point to match and 
calculate the depth.  Experimental results indicated that the actual 
distance between 150-450 mm was more suitable to calculate the 
depth, and the average error was less than 14 mm.  It could meet 
the requirements of positioning accuracy for Hangzhou White 
Chrysanthemums harvesting robot. 

(3) The overall experiment showed that average time from 
mechanical arm start-up to picking chrysanthemum was 14.5 s.  
And Hangzhou White Chrysanthemums can be successfully picked 
with the rate of 88%.   

The proposed method had a good effect on the single target 
and slight occluded targets.  To some severe random occluded 
regions, this method cannot recognize targets effectively.  Further 
studies will improve the adaptability of algorithm on occluded 
targets and the positioning accuracy on high-speed synchronous 
camera. 
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Nomenclature 

Symbol Definition 

RGB RBG color model 

HSV HSV color model 

FCM Fuzzy C-means 

U the membership matrix 

V the clustering center matrix 

c the category of clustering 

k k-th grayscale 

i the i-th category 

uik 
the membership degree of the k-th grayscale which belongs to 
the i-th category 

vi the i-th clustering center 

Dik 
the square of Euclidean distance from the k-th grayscale to the 
vi 

L the grayscale of the clustering sample data 

ω(k) the frequency of pixel in k-th grayscale 

m the weighted index 

n the total number of pixels in the connected region 

b baseline length 

f lens focus 

d the binocular parallax of a point 

ε threshold for the number of clustering iterations 

d1 actual distance 

d2 calculation distance 

AE absolute error between actual distance and calculation distance

RE relative error between actual distance and calculation distance
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