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Abstract: An adaptive turning algorithm for a four-wheel robot tractor in the headland is presented in this paper.  The 
navigation sensors consisted of an inertial measurement unit and a real-time kinematic global positioning system (GPS).  An 
objective function based on weights was used to create the navigation path, connecting by continuous primitives.  The 
asymmetric steering mechanism was then taken into consideration with a vehicle model.  To follow the path accurately, the 
slide movement of the robot and the steering rate were taken into account by estimating the turning radius in real time.  In 
addition, the vehicle model was tuned based on the results of each turn.  Therefore, the turning control algorithm was 
optimized on the basis of the specific conditions in the field.  Field experiments showed that the robot tractor approached the 
next path with an average lateral deviation of 3.9 cm at a speed of 1.2 m/s during a turn.  Compared to a conventional turning 
scheme, the time consumption and turning trajectory were decreased by 17% and 21%, respectively. 
Keywords: autonomous tractor, path planning, dynamic circle-back turning, switch-back turning, robot tractor, reinforcement 
learning 
DOI: 10.25165/j.ijabe.20181106.3605 
 
Citation: Wang H, Noguchi N.  Adaptive turning control for an agricultural robot tractor.  Int J Agric & Biol Eng, 2018; 
11(6): 113–119. 

 

1  Introduction  

Automation of agricultural machinery is considered to be one 
of the most efficient ways of improving productivity and quality of 
farming.  The turning maneuver with extensive driving operations 
plays a crucial role in the automation of agricultural robots.  
Challenges of autonomous turning control for agricultural robots 
are to design feasible navigation path and to implement adaptive 
control techniques.  In pursuit of stable control performance, the 
control algorithms should be adaptive based on the change of 
vehicle speed and soil conditions.   

Optimal methods for headland turns include u-turning[1], 
keyhole turning/bulb turn/forward turning[2], fishtail 
turn/switch-back turning[3,4] and other methods modified from 
previous ones according to different shapes of headland[5–7].  The 
turning methods mentioned above can be easily embedded in 
autonomous navigation systems because maneuvers are all fully 
specialized.  However, those methods are not adaptive for changes 
in various conditions such as the vehicle speed and the soil 
property.  In practice, additional paths are added at the start or the 
end of turning procedures in order to smooth the planned path and 
to decrease the lateral deviation after turning.  For example, an 
additional straight forward path[4,8] and a continuous curvature 
path[9–11] are added before and after headland turns.  With these 
modifications, a robot tractor turns to the next path with a longer 
trajectory and occupies more headland space.  These methods also 
require the control unit of the robot to be equipped with sufficient 
memory and computing capacity for designing and optimizing the 
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path when in operation.   
Model-based control methods for wheel-type tractors are 

developed to tackle the straight and curved paths tracking 
problem[12–15].  Recent publications also address the trajectory 
tracking problem of tractor-implement systems on the basis of the 
kinematic model, the dynamic model, and their modifications[13].  
Bicycle model and adaptive model are applied to control the 
automated car performing functions, including lane keeping, lane 
change and overtaking[16–18].  The vehicle motion model was used 
to control the automobile during the reverse movement[19].  
However, few of them have considered the sideslip of the vehicles, 
asymmetric steering mechanism in the left/right side or different 
turning radii of backward and forward movements.  For example, 
a nonlinear model predictive control[13] was able to estimate the slip 
parameters of tire-soil interactions in different environmental 
conditions.  However, the performance was not satisfactory.  An 
average deviation of 0.60 m and a maximum deviation of 1.54 m 
were found during the headland turns.  Considering the changes of 
soil moisture, steering angle, and speed, the turning control should 
be optimized by adapting the control parameters on the basis of a 
vehicle model tuned by measured data. 

To simplify maneuvers at the headland and to increase the 
accuracy after turning, an adaptive control algorithm called 
dynamic circle-back (DCB) turning is introduced in this paper.  
The designed operations are easy for the robot to perform.  Also, 
considering the lock-to-lock time (LTL, the time taken to fully 
steer from one side to the other side) and the slide of the vehicle, 
the control algorithm records the position of the vehicle and 
calculates the turning radius in real time.  By adjusting the 
weights of demands (high accuracy after turning, less time 
consumption, and less headland occupancy), the algorithm creates 
an optimal path according to the estimation of the forward turning 
radius.  In addition, a reinforcement learning method is used to 
update the steering model after each turn.  The performance of the 
algorithm and improvements in the algorithm compared with 
conventional schemes were evaluated in dynamic field tests. 
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2  Specification of adaptive turning control algorithm 

The DCB turning control algorithm plans the turning path by 
imitating the farmer’s maneuvers.  Figure 1 shows a typical 
trajectory created by the DCB turning.  In this example, the path 
space, the distance between the current path (Path_1) and the next 
path (Path_2), is W.  This pattern of the trajectory is especially 
suitable for a narrow path space (less than 2 times the minimum 
turning radius) condition that needs complex lane-change 
maneuvers.  At the end of the working path, the tractor turns left 
and moves along arch A-B.  Then the tractor steers to the right at 
point B and goes backward to point C.  Finally, the tractor goes 
forward and approaches the next path from point D.  Unlike the 
algorithms mentioned before, the turning radii of forward 
movement (Rleft) and backward movement (Rright) are of different 
values.  Furthermore, all of the turning radii are measured during 
turning, rather than adopting empirical values.  According to the 
measured turning radius, the backward navigation path is optimized 
in real time. 

 
Figure 1  Scheme of the DCB algorithm 

 

A flowchart of turning algorithm is shown in Figure 2.  The 
input of the turning algorithm includes the position of the vehicle, 
the posture of the vehicle (yaw, pitch and roll angles), the speed, 
the steering angle, the lateral and the heading deviations from the 
navigation map, and limitations of speed, steering angle and 
headland occupancy.  By balancing designer’s demands (higher 
accuracy, less time consumption, and smaller headland occupancy), 
the objective function of the dynamic turning method creates an 
optimal pathway according to the vehicle model.  The vehicle 
model indicates relations of the steering angle and the turning 
radius in different sides with forward or backward movement.  
The regression analysis is used to estimate the turning radius of 
forward movement in real time.  In addition, considering the 
movement during LTL time, delay response caused by the inertia 
of the vehicle, and the sideslip while turning, the objective function 
calculates the turning radius of forward movement and optimizes 
the pathway using the vehicle model in real time.  The error of the 
vehicle model is represented as the difference between estimated 
turning radius (from the vehicle model) and the calculated turning 
radius (from the regression analysis).  The performance of turning 
control is evaluated by the error analysis mechanism, which 
considers the error of the model and the lateral deviation at the end 
of backward movement (the Point C in Figure 1).  After each 
headland turn, a reinforcement learning method is adopted in real 
time to tune the vehicle model by considering measured data as the 
training dataset. 

 
Figure 2  Flowchart of the DCB turning algorithm 

 

2.1  Objective function based on weights 
To adjust the turning route according to different regulations, 

such as efficiency, speed, headland space and so on, an objective 
function (J) is defined to optimize the time consumption (T) and 
the lateral deviation from navigation path (Δd) in: 

0( ,Δ )
. . 1

J T d h H t T ε Δd
s t h t ε

= ⋅ + ⋅ + ⋅

+ + =
           (1) 

which takes the weights of headland distance (h), time (t), 
end-point accuracy (ε) requirements, and reference headland 
distance H0 as inputs, and then designs the navigation path and 
decides the steering angle (δ) and turning speed (v).  During the 
turning (with forward and backward movement), the vehicle keeps 
a constant speed determined by: 

min max min( )v V t V V= + −            (2) 
where, Vmin and Vmax are the minimum and maximum speed 
limitations of turning.  The values of weights are three 
hyper-parameters that need the user to adjust according to different 
requirements.  Figure 3 shows three typical examples of paths 
created by different combinations of weights in the objective 
function.  If the headland distance is short, we have to 
compromise on end-point accuracy and time consumption.  In this 
case, the trajectory A-B1-C1-D might be an optimal choice.  If 
time is limited, the tractor should follow a path such as A-B3-C3-D 
with less trajectory and high turning speed.  Under an ideal 
condition, point C2 will be on the extension line of the next path, so 
the lateral deviation of the vehicle would be zero along the path of 
C2-D.  

 
Figure 3  Planned paths for turning 

 

Considering vertical and horizontal disturbances applied to the 
soil at the headland, the robot tractor starts to turn at the end of the 
straight path without pause.  The tractor starts to steer at the end 
of the current path and to go forward until the yaw angle has 
changed θ degree: 



November, 2018                     Wang H, et al.  Adaptive turning control for an agricultural robot tractor                      Vol. 11 No.6   115 

90 arcsin(( ) ( )) 180

      10.0( ) (1 )
b f f b

bias

θ R W R R R

t h ε θ

= + + − + ⋅ π +

− + ⋅ − +
     (3) 

where, Rf and Rb are the turning radii of forward movement and 
backward movement, respectively.  W is the path space.  Ideally, 
the robot will follow the path A-B2-C2-D (in Figure 3) when t 
equals h or ε equals 1.  Considering the move during LTL time 
and the wheel slip, the control algorithm records the position of the 
vehicle during turning and calculates the turning radius by the least 
square method (LSM) in: 
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where, (xi, yi), i∈[1,N] are the 2D position of the robot tractor 
recorded by the real-time kinematic-global positioning system 
(RTK-GPS), and a, b and R are the center position of the fitted 
circle and the estimated turning radius, respectively.  Besides the 
movement during LTL time and wheel slip, the vehicle cannot stop 
immediately at the desired position because of delay response of 
the control unit and the inertia of the vehicle.  Therefore, the 
deviation after backward turning (for example, the lateral 
deviation[20] at point C2 in Figure 3) is taken as a feedback to 
resolve the bias of the model, as shown in: 

arcsin[Δ ( )]bias f bθ d R R= +           (5) 

where, Δd is the lateral deviation from the navigation path, and the 
sign of the deviation is determined by the relative position of the 
robot and the next working path[4].   
2.2  Learning function based vehicle model 

Different from the bicycle model, in which the lateral forces in 
left and right wheels are simply assumed to be equal in value and 
direction, the vehicle model of DCB turning method deals with the 
movements of the tractor in different directions separately.  As the 
vehicle reverses during turning, the actual turning radius varies 
according to the lateral tire force of front and rear wheels and the 
slip angle of the tires.  Due to the asymmetric mechanism and the 
variance of hydraulic steering power, the turning radii of steering to 
the right and steering to the left are different.  Additionally, the 
soil type or moisture, steering angle and speed affect the turning 
radii.  Regardless of estimating unknown parameters separately, 
the DCB turning algorithm treats the vehicle (with or without a 
farming implement) as a unit, analyzes the vehicle-soil interactions 
through variations of turning radii and tunes the model’s 
parameters in real time.   

Table 1 shows a sample of the dataset for modeling the vehicle.  
The data are classified by the steering direction, the steering angle, 
the direction of the movement, the turning radius of the trajectory, 
and weights of data in each row.  The values of radii in the fifth 
column are mean values of several experiments at different turning 
speeds or soil conditions.  The weight of each group of data in a 
row is related to the accuracy of the data.  The initial dataset 
shares the same weight, 1/N0 (N0 being the total number of initial 
dataset).  The training data plotted in Figure 4 indicates the 
relation of turning radii in different directions (forward and 
backward) at several steering angles (Figures 4a and 4b) and the 
relation of steering angle and turning radius (Figures 4c and 4d). 

 

Table 1  Sample of training data 

Weight Steer Angle/(°) Direction Radius/m 

1/N0 Left 30 Forward 5.6 

1/N0 Right 40 Backward 4.2 

… … … … … 

 
a.Relations of turn radii in different 

directions 

 

b. Relations of turn radii in different 
directions 

 
c. Relations of turning radius and 

steering angle 

 

d. Relations of turning radius and 
steering angle 

 

Figure 4  Variance of turning radii of different steering angles  
 

In case of overfitting, a linear function indicates the relation of 
turning radii in different directions:  
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where, RLeft_Backward and RLeft_Forward are the turning radii of a turning 
left maneuver when the tractor moves backward or forward, 
respectively; RRight_Backward and RRight_Forward represent the turning 
radii of backward and forward movements with steering to right, 
respectively.  Steering angle for headland turning is represented as 
a quadratic function of turning radius in: 
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where, δright and δleft are steering angles on the right and left.  
Large or maximum steering action is commonly used at headland 
turns, and experiments in this study reveal that the quadratic 
function fit the data better than a tangent function in expressing the 
nonlinear relation of turning radius and steering angle[19].  
Equations (6) and (7) compose the vehicle model for designing and 
optimizing navigation path.  The coefficients of the vehicle model 
can be rewritten as: 
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During a field test, the vehicle model should be tuned based on 
the result of each turn.  Turning radii of forward and backward 
movements represent the state of the tractor in the current field.  
In case raw measured data are not consistent, data from different 
experiments are processed and combined with the initial dataset.  
The update of weights in the dataset follows the rules in: 
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where, μ, set as a constant value, is the learning rate of the dynamic 
turning method.  Rm is the predicted turning radius of the vehicle 
model, and Rm′ is the measured value by Equation (4).  Processed 
data for calculating the initial vehicle model are stored from 
number 0 to N0–1 continuously and share the same value of weight.  
The real-time measured data indexed from N0 to N–1 are added to 
the dataset with different weights, which are related to the errors of 
the model during each field test.  In case of overwhelming data, 
the weights of experiments are limited to a state smaller than the 
weights of data in the original dataset, and the amount of dataset (N) 
is defined to be smaller than a threshold (such as two times of N0 in 
this study).  The reinforcement learning mechanism tunes the 
model and adapts it to different conditions, and also guarantees 
robustness.   

3  Experiments and discussion 

In order to investigate the performance of the newly developed 
turning algorithm, several tests were conducted at an experimental 
farm of Hokkaido University, Sapporo, Hokkaido, Japan.  The 
robotic platforms in this study were two four-wheel-type tractors 
(EG105 and EG83, YANMAR Co., Ltd., Japan) as shown in Figure 
5.  There was no implement connected to the EG105[21], and a 
rotary was connected to the EG83.  An RTK-GPS system 
(Trimble SPS855, Trimble Navigation, USA) and an inertial 
measurement unit (IMU) (VN100, VectorNav Technologies, USA) 
were installed inside the cabin to measure the tractor’s absolute 
position and the posture of the tractor, respectively.  A PC in the 
robot tractor with Windows® operation system (OS) is used to 
perform all the functions including robot control, obstacle detection 
and receiving feedback information from the tractor.  The control 
algorithm in this paper is mainly developed in the C++ 
programming language. 

 
EG83                           EG105 
Figure 5  Research platforms 

 

3.1  Initial parameter identification  
Figure 4 shows the data for calculating the vehicle model of 

the tractor, EG105.  The turning radius will change with the speed 
and soil conditions.  To simplify the experiment, the position data 
of the tractor are recorded at a speed of 1.0 m/s in different soil 
conditions.  In the experiments, the tractor steers at σ = 30°, 33°, 
35°, 38° and 40° to the right and the left as shown in Figures 4c and 
4d, separately.  Each steering angle is paired with one turning 
radius or more values (like the 40°in Figure 4c).  Therefore, the 
number of training dataset (N0) is 11 in this example.  The amount 
of training dataset was defined to be 20, that is to say, the vehicle 
model would be tuned according to the previous 9 turns.  Initial 
values of the vehicle model are: 
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3.2  Overall performance evaluation 
The trajectory of the robot tractor EG83 is shown in Universal 

Transverse Mercator (UTM) coordinate system in Figure 6.  There 
are 10 paths from the right to left of the map, and the path space 
was set to 2.5 m.  The reference headland distance was set to   
9.5 m.  The working order of the paths was in sequence, from  
Path 1 (near the arrow in Figure 6) to Path 10 with 9 turns.  The 
minimum speed for turning was set as 0.7 m/s.  Due to the 
oscillations caused by the uneven ground surface at the headland, 
the field test was conducted up to 1.2 m/s turning speed. 

 
Figure 6  Trajectory of the robot tractor 

 

Field tests were done 6 times with different combinations of 
weights in the Equation (1).  As shown in Table 2, the efficiency 
and accuracy of the robot tractor were analyzed from 5 aspects: 
occupied headland distance, length of the turning trajectory, time 
consumption, average speed during turning, and lateral deviation of 
the end-point.  According to the data shown in Table 2, it can be 
concluded that the end-point deviation is smaller than 5 cm when 
the headland distance is larger than 8.02 m.   

 

Table 2  Field tests with different weights combinations 

[h, t, ε] [0, 1, 0] [0, 0, 1] [1, 0, 0] [0.1, 0.6, 0.3] [0.6, 0.4, 0] [0.4, 0.2, 0.4]

Headland/m 9.75 9.26 6.62 9.31 8.02 8.34 

Trajectory/m 28.7 27.4 20.4 27.4 24.2 25.0 

Time/s 30.7 33.8 25.1 32.4 27.1 30.7 

Average 
speed/m·s-1 0.93 0.81 0.81 0.85 0.89 0.81 

Deviation/cm 3.9 2.3 13.8 4.1 5.1 2.6 
 

The DCB turning algorithm can regulate maneuvers of the 
robot at the headland according to the constraints of the field and 
manual settings.  Taking the third turn of the 10-path map as an 
example, trajectories of the robot tractor are shown in Figure 7.  
To express the length of the trajectory clearly, the origin of the 
coordinate was shifted to (527180.0, 4769333.0) in UTM 
coordinate.  The red line indicates the edge of the field, and  
the black line is the extension line of the next working path.  
Firstly, the robot turned along the red circles and went backward 
along the black dots.  Then the robot tractor moved into the next 
path as indicated by blue blocks.  The turning paths are different 
from each other because of the change of weights in the Equation 
(1).  For example, the robot tractor’s trajectory is shown in 
Figure 7a when the ratio of t is set to 1.  The robot steers to a 
certain steering angle to occupy the whole headland space and 
turns at the maximum speed.  In Figure 7c, the robot fully  
steers to the left side and turns at a low speed so as to decrease 
the headland distance because the ratio of h is set to 1.  In Table 
2, it is observed that the headland distance and the turning 
trajectory in the third column are smaller than values in other 
conditions.  However, the average lateral deviation after turning 
is 13.8 cm, which is much larger than deviations in other 
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conditions.  Even though the robot tractor might deviate from 
the next path after the backward movement as shown in Figures 
7a and 7c, the robot tractor can make use of the headland space 
and approach the next path smoothly.  The weights should be 

adjusted according to the requirements of headland distance, time, 
and end-point accuracy.  Accordingly, the robot tractor will turn 
to next working path along different trajectories similar to those 
in Figures 7d-7f.    

 
a. [h, t, ε] = [0, 1, 0] b. [h, t, ε] = [0, 0, 1] c. [h, t, ε] = [1, 0, 0] 

 
d. [h, t, ε] = [0.1, 0.6, 0.3] e. [h, t, ε] = [0.6, 0.4, 0] f. [h, t, ε] = [0.4, 0.2, 0.4] 

 

Figure 7  Trajectories of the robot tractor during the third turn 
 

Updating the vehicle model during the field test is a key factor 
for the robot tractor to follow the path accurately.  When the 
weight of accuracy (ε) was set to 1, the robot tractor should ideally 
stop at the extension line of the next path (point C2 in Figure 3) 
after the backward movement as shown in Figure 7b.  However, 
deviation from the planned path is inevitable because of various 
factors such as the error of the initial vehicle model, sideslip of the 
robot tractor when turning, the time delay of the control unit.  The 
procedure of updating the vehicle model in DCB turning algorithm 
is shown in Figure 8.  For the first turning, the vehicle steers to 
right/left with the initial model.  It can be observed that the 
vehicle model became stable after tuning parameters one time.  In 
addition, gaps of parameters after the 3rd update illustrate that the 
model is adaptive to the variations of external factors and 
converges again soon.  The trajectory of the first turn is shown in 
Figure 9a.  For comparison, the trajectory of the third turn in 
Figure 7b is enlarged and is shown in Figure 9b.  It is found that 
the trajectory of the robot tractor coincided with the navigation path 
after one-time parameter tuning.   

Figure 10 shows changes in vehicle speed and steering angle 
during a turn.  The speed during a turn was 1.0 m/s and the speed 
in operation was about 1.4 m/s.  The maximum steering angle was 
±40 degree during the turn.  The graphs also show that the robot 
tractor did not stop when the steering angle was changed.  
Although the robot tractor deviates from the optimal path when the 
steering angle is changed, the method for estimating the turning 
radius in real time can decrease the error caused by deviation.  

Moreover, the reinforcement learning method is used to update the 
vehicle model and to regulate the turning angle of the basis of the 
experimental data.  Therefore, the robot tractor could turn into the 
next path with the precision of 3.9 cm at a speed of 1.2 m/s when 
the ratio of t was 1.   

 
a. Update of vehicle model in the Equation (6)                          

 
b. Update of vehicle model in the Equation (7) 

Note: S00 and S10 are plotted on the secondary axis. 
Figure 8  Update of vehicle model parameters  
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a. Trajectory of the first turn 

 
b. Trajectory of the third turn 

Note: Weights of the objective function were set to [h, t, ε]=[0, 0, 1]. 
Figure 9  Trajectories of the robot tractor when turning   

 

 
Note: Minus value of steering angle means the tractor steers to left side. 

Figure 10  Steering angle and speed when turning   
 

It is proved that the steering angle during a turn could be 
adjusted on the basis of the desired headland distance.  When the 
headland space is large enough for turning, the robot tractor turns 
to next path with small steering angle, which is important for not 
damaging the soil surface.  Besides, by calculating the radius of 
the trajectory during a turn, the algorithm could optimize the 
planned path in real time.  With the learning mechanism, the DCB 
algorithm could analyze the accuracy of measured data after each 
turn, tune the vehicle model and make it applicable to different 
conditions, and guarantee robustness.  One limitation of the DCB 

turning control algorithm is that it is not suitable for the tractor 
with a towed implement system, because the position of the 
implement (i.e., a trailer) is controlled by several actuators 
including the steering of the tractor and the hydraulically controlled 
joint.  But this turning algorithm works well for the tractor with a 
mounted implement, such as the rotary in Figure 5, the plow and 
the sprayer, which does not move horizontally relative to the tractor.   
3.3  Comparison to the switch-back turning algorithm 

The switch-back turning method[8] is now widely used because 
of its good efficiency and accuracy.  Therefore, the switch-back 
turning as a representation of traditional methods was compared 
with the DCB turning method in four maps with different path 
space, which are 2.0 m, 2.5 m, 3.0 m and 3.5 m.  The robot tractor 
in this experiment was EG105 without an implement behind the 
tractor.  The speed of turning for the two methods was the same, 
1.0 m/s.  For DCB turning, the weights were set to [0.5, 0, 0.5] in 
the tests, which meant h and ε were equally considered.  Field 
experiments were conducted in maps with 10 working paths for 
both the switch-back turning and DCB turning methods.  The 
reference headland distance was set to 7.0 m, and the tractor 
therefore fully steered to the left/right at the end of the path.  For 
the switch-back turning method, the forward movement before 
turning was 2.0 m so as to approach to the next lane with a small 
deviation.  Note: Path space was 3.5 m. 

Figure 11 shows trajectories of the robot tractor with the 
different turning algorithms.  The robot tractor started to turn at 
the red point in Figure 11 and steered fully to the right in this 
example.   

 
a. Switch-back turning method        b. DCB turning method 

Note: Path space was 3.5 m. 
Figure 11  Turning trajectories of the robot tractor 

 

As shown in Table 3, four aspects were analyzed in the 
comparison experiments: length of turning trajectory, time 
consumption, occupied headland distance, and lateral deviation of 
the end-point.  The maximum headland occupancy of DCB 
turning was not larger than that of switch-back turning.  The 
trajectory of DCB turning was 21% less than that of switch-back 
turning when the width of two paths was 3.0 m.  Corresponding to 
the decrease in the trajectory, the time consumption of DCB 
turning was 17% less than that of the switch-back turning 
algorithm.  When the DCB turning algorithm was used, the 
improvement of accuracy after turning was about 79% when the 
distance between paths was set to 2.0 m.   

 

Table 3  Comparison of DCB turning and the switch-back turning algorithm 
W/m 2.0 2.5 3.0 3.5 

Method DCB Switch-back DCB Switch-back DCB Switch-back DCB Switch-back 

Trajectory/m 21.7 25.5 20.9 23.9 20.0 25.3 19.8 24.2 
Time/s 26 31 26 30 25 30 25 30 

Headland/m 7.4 7.4 6.9 7.0 6.5 7.3 6.2 7.4 
Deviation/cm 3.6 17.3 5.4 14.2 5.6 16.4 7.7 19.2 
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4  Conclusions 

An adaptive headland turning algorithm, DCB, was presented 
in this paper.  The algorithm could create an efficient path, with 
connected primitives, and optimize maneuvers during a turn.  The 
vehicle model in DCB turning was represented as the relation of 
turning radii in different directions and the relation of turning 
radius and steering angle in forward movement.  The trajectory 
pattern and the dynamic vehicle model in the DCB turning 
algorithm make it more accurate than the traditional switch-back 
turning method in the same headland distance.  Under the control 
of DCB turning algorithm, the experimental robot tractor could turn 
to the next working path with or without a rotary at a speed of   
1.2 m/s.  The average lateral deviation after turning was about  
3.9 cm, which was a significant improvement compared with the 
switch-back turning method.  And it brings less headland 
occupation and time consumption as well.  Therefore, it can be 
concluded that the adaptive turning algorithm is accurate and 
robust enough for controlling robot tractors. 
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Nomenclature 
a,b center position of the fitted circle (turning trajectory) 
h weight of headland distance 
H0 reference headland distance 
N0 number of initial dataset 
N number of whole dataset 

r coefficient matrix of vehicle model indicating the relation of
turning radii in different directions 

R turning radius (Subscripts indicate the moving direction.) 

s coefficients/matrix of vehicle model indicating the relation
of steering angle and turning radii 

t weight of efficiency 
j index of dataset 
J objective function 
v vehicle speed 
V limitation of speed 
W distance between the current path and the next path 
(x,y) 2D position of the robot tractor recorded by the RTK-GPS

α, β coefficients of vehicle model indicating the relation of
turning radii in different directions 

σ steering angle 
Δd lateral deviation 
ɛ weight of accuracy 
ω weight of each datum in the dataset 
μ learning rate of the dynamic turning method 
θ change of yaw angle 
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