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Abstract: In this study, an approach that integrates airborne imagery data as inputs was used to improve the estimation of soil 
water deficit (SWD) for maize and sunflower grown under full and deficit irrigation treatments.  The proposed model was 
applied to optimize the maximum total available soil water (TAWr) by minimizing the difference between a water stress 
coefficient ks and crop water stress index (1-CWSI).  The optimal value of maximum TAWr was then used to calibrate a soil 
water balance model which in turn updated the estimation of soil water deficit.  The estimates of SWD in the soil profile of 
both irrigated maize and sunflower fields were evaluated with the crop root zone SWD derived from neutron probe 
measurements and the FAO-56 SWD procedure.  The results indicated a good agreement between the estimated SWD from 
the proposed approach and measured SWD for both maize and sunflower.  The statistical analyses indicated that the maximum 
TAWr estimated from CWSI significantly improved the estimates of SWD, which reduced the mean absolute error (MAE) and 
root mean square error (RMSE) by 40% and 44% for maize and 22% for sunflower, compared with the FAO-56 model.  The 
proposed procedure works better for crops under deficit irrigation condition.  With the availability of higher spatial and 
temporal resolution airborne imagery during the growing season, the optimization procedure can be further improved. 
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1  Introduction  

In arid and semi-arid regions of the world, water  
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scarcity is one of the most important challenges for 
agricultural water management.  Crop production 
heavily depends on adequate soil moisture storage in the 
root zone.  Thus, accurate knowledge related to root 
zone soil water deficit is required for irrigation 
management in order to maximize water use efficiency 
under limited water supplies.  

Soil water balance models have been used for 
irrigation management.  Over the last few decades, the 
dual crop coefficient approach described in FAO-56 
manual[1] has been widely accepted as a tool for irrigation 
scheduling.  The generally called “Two-step” 
methodology distinguishes crop transpiration (T) and soil 
evaporation (E) using two key variables, basal crop 
coefficient (kcb) and reference (e.g., grass) 
evapotranspiration (ETo).  The kcb is defined as the ratio 
between crop potential transpiration and ETo and used to 
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determine crop potential transpiration under well-watered 
conditions.  For crop under water limited conditions, 
actual transpiration will be limited by soil water supply[2].  
In this situation, the water stress coefficient (ks) will 
multiply kcb to count for the influence of water stress on 
crop transpiration.  Total available water at root zone 
(TAWr)[3-5] is the important parameter to determine ks, 
and deep percolation.  Furthermore, TAWr is influenced 
by crop variety, root depth, and soil properties[3]. 

A few studies have been conducted to improve the 
estimation of soil water content.  Sánchez et al.[6] 
introduced satellite-based NDVI (normalized difference 
vegetation index) for the calculation of kcb in FAO-56 
water balance model for spatially distributed simulation 
of soil moisture at watershed scale.  Neale et al.[7] 
proposed a hybrid model that corrects ET estimated by 
the two-energy balance model (TSEB) using the ET 
provided by a reflectance-based crop coefficient model.  
The corrected ET then was used in a soil water balance 
model to estimate soil water content for a cotton crop.  
More recently, Campos et al.[8] have combined actual ET 
measurements with a soil water balance model to estimate 
total available soil water in vineyards.  However, in-situ 
evapotranspiration measurement is not always available.  

Canopy temperature increases in response to water 
stress and water shortage in root zone.  It has been used 
widely as an indicator of crop water status.  Canopy 
temperature can be easily acquired using infrared 
thermometers or infrared thermal cameras.  Canopy 
temperature measured by thermal cameras has been used 
to directly estimate soil water deficit[9].  Crop water 
stress index (CWSI), calculated from canopy temperature, 
has also been used successfully to determine crop water 
stress[10-12].  The stress coefficient ks can be estimated 
from CWSI as 1-CWSI.  CWSI is mathematically defined 
in Equation (1)[13,14].  Where the upper term in the 
equation (Tc – Ta)u represents the upper limit or boundary 
while in the denominator of the equation (Tc –Ta)l 
represents the lower boundary.  In the equation, Tc –Ta 
stands for temperature difference between canopy and air.  
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where, (Tc – Ta)i is the difference between canopy 

temperature (Tc, °C) and air temperature (Ta, °C) for day i. 
(Tc – Ta)u and (Tc – Ta)l represent non-transpiring and fully 
transpiring conditions, respectively.  

When a crop is under full water condition, CWSI 
value is close to 0; while for a crop under severe water 
stress condition, CWSI value is close to 1.  (Tc – Ta)u  
and (Tc – Ta)l can be estimated as linear functions of 
atmospheric vapor pressure deficit (VPD) and vapor 
pressure gradient (VPG), respectively: 

(Tc – Ta)l = a · VPD + b            (2) 
(Tc – Ta)u= a ·VPG +b            (3) 

where, a and b are the slope and intercept of linear 
equations, respectively.  These two linear relationships 
are called water stress baselines.  In this study, we used 
the water stress baselines that have been developed for 
the study area by DeJonge et al.[15] and Taghvaeian et 
al.[16] 

Thus, the goal of this study was to investigate the 
capability of the crop water stress index, calculated from 
airborne thermal imagery, to optimize the estimation of 
total available water in the crop root zone.  The 
proposed approach used data assimilation techniques to 
update soil water deficit values using an optimal 
maximum total available water by minimizing the 
difference between ks calculated by a soil water balance 
method[1] and 1-CWSI.  

2  Materials and methods 

2.1  FAO-56 soil water balance model 
According to Allen et al.[17], the root zone soil water 

balance, at daily time steps, is given by the Equation (4) 
below.  

( )i i 1 i i i i i i iDr Dr T E DP P RO I CR−= + + + − − − −   (4) 

where, Dri is the root zone soil water deficit on day I; 
Dri–l is soil water deficit on day i – 1; Ti is actual plant 
transpiration on day I; Ei is soil evaporation on day I; Pi 
and Ii are gross precipitation and irrigation, respectively, 
on day I; DPi is deep water percolation from the root zone 
on day I; ROi is the runoff from soil surface on day I; and 
CRi is the capillarity rise from the ground water.  The 
units of the above components are in mm. 

In this study, we assumed there was no surface runoff 
(ROi) in the field (low slope and moderately high soil 
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infiltration), and the capillarity rise (CRi) from the 6 m 
deep water table was assumed to be negligible.  The 
maximum maize root zone depth observed in this field 
was around 1.05 m[18].  The Dri is determined by the 
FAO-56 approach[17], which is limited by the total plant 
available water in the root zone.  The minimum value of 
Dri is zero, when soil water content is at field capacity.  

According to Allen et al.[17], actual transpiration (Ti) 
and actual soil evaporation (Ei) in Equation (4) are 
determined by the dual coefficient method: 

, , 0,i s i cb i iT k k ET= × ×             (5) 

, , 0,s i e i iE k ET= ×               (6) 

where, ks,i is the water stress coefficient, which ranges 
from 0 to 1 and decreases crop transpiration based on soil 
water availability; kcb,i is the basal crop coefficient, which 
is the ratio of crop potential transpiration to reference 
crop evapotranspiration; ET0,i is the reference crop 
evapotranspiration (grass based) on day I; and ke,i is soil 
water evaporation coefficient on day i.   
2.1.1  Water stress coefficient ks  

The water stress coefficient ks is affected by TAWr, Dr, 
and potential transpiration rate. Colaizzi et al.[19] found 
that ks determined by the approach suggested by Jensen et 
al.[20] had a better correlation with CWSI than the ks from 
the FAO-56 approach[17].  Thus, in this study, the ks was 
defined as[19,20]: 

1
,
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where, the fDEPi–1 is the ratio of root zone soil water 
deficit on day i – 1 (Dri–1) and root zone total available 
water on day i (TAWri). 
2.1.2  Total available soil water at root zone (TAWr) 

TAWr is affected by soil texture and rooting depth[17]. 
In this study, we directly determine the TAWr 
development with four parameters: t1, tx, TAWmin, and 
TAWmax in Equation (8).  
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where, t1 is the day after planting, before which the root 

did not begin to develop; TAWmin is the total available 
water in root zone in this period (from planting to t1).  
The tx is the day after planting when crop root reach its 
maximum depth, and the TAWmax is the maximum root 
zone total available water at that time (after tx).  
2.2  Inversion procedure for TAWr estimation 

In the above soil water balance model, the unknown 
parameters are t1, tx, TAWmin, TAWmax in Equation (8). 
The parameter t1, tx, TAWmin were obtained from a 
previous water balance study at the same field, which 
were 7, 68 and 18.25, respectively[21].  The soil water 
balance model estimates the daily Dr, and then the Dr can 
be used to estimate the daily water stress coefficient ks by 
a given TAWmax.  Alternatively, ks can be calculated by 
(1–CWSI). Therefore, we propose an optimized procedure 
to estimate TAWmax by minimizing the difference between 
the ks calculated from a soil water balance model and ks 
from canopy temperature measurements denoted as 
ks_CWSI (Figure 1).  In the optimization process, the Nash 
coefficient in Equation (9) was used to evaluate the 
difference between ks and ks_CWSI.  The optimization 
procedure was completed by using a multi-objective 
optimization package (mco) in the statistical program 
R[22].  The objective function was defined as follows[22]: 

 
Figure 1  Flowchart of optimized TAWmax with CWSI 
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where, n is the total number of observation;⎯ks,i and 

ks_CWSIi are the daily mean values of water stress from the 
soil water balance model and CWSI, respectively.  

2.3  Experimental data 

2.3.1  Study site 

An experiment was conducted on maize (Zea mays 
L.) and sunflower (Helianthus annuus L.) fields during 

the summer of 2015 at the USDA-ARS Limited 
Irrigation Research Farm (LIRF), in Greeley, Colorado, 
USA (40°26'57''N, 104°38'12''W, elevation 1427 m, 

Figure 2).  The alluvial soils of the study field are 
predominantly sandy and fine sandy loam of Olney and 

Otero series.  The maize and sunflower were planted 
on June 1 (DOY 152) and June 16 (DOY 167) in 2015, 

respectively.  The plant density was 80 000 seeds/hm2 
for maize and 67 200 seeds/hm2 for sunflower.  During 
the growing season, twelve irrigation treatments, with 

varying levels of regulated deficit irrigation (RDI) 
(Table 1, Column 1), were arranged in a randomized 

block design with four replications (Figure 2).  The 
deficit irrigation was applied during the late vegetative 

growth stage and/or the maturation growth stage, which 
are V7-V21 and R3-R6 in maize; and V8-R2 and R6-R9 

in sunflower.  Each treatment targeted a percent of 
maximum non-stressed crop ET during late vegetative 
and maturation growth stages, respectively.  Each 

treatment plot was 9 m wide by 43 m long with 12 rows 
at 0.76 m spacing.  Sum of actual net irrigation 

amounts and precipitation for each treatment by growth 
stage are shown in Table 1.  During the growing season 

in 2015, water was applied using 16 mm internal 
diameter drip irrigation tubing, which was placed next to 
each row of maize.  Fertilizers were applied same 

amount to avoid nutrient deficiencies on all the 
treatments[15].  Meteorological data were acquired by 

the on-site Colorado Agricultural Meteorological 
Network GLY04 weather station (CoAgMet, 

http://ccc.atmos.colostate.edu/ ～ coagmet/). The 

measurements included hourly air temperature, relative 

humidity, incoming shortwave solar radiation, 
horizontal wind speed at 2 m above a grass reference 
surface, and daily precipitation.  

 

Table 1  Total net irrigation and precipitation (mm) for each 
treatment in maize and sunflower for different growth stages 

Maize Sunflower 

Treatment Veg 
6/2-8/3

Rep 
8/4-8/24

Mat 
8/25-10/10 

Veg 
6/17- 8/12 

Rep 
8/13-9/2

Mat 
9/3-10/10

100/100 166 116 199 186 73 161 

100/50 166 90 33 185 47 25 

80/80 126 108 146 133 57 132 

80/65 126 98 87 134 58 69 

80/40 40 111 149 53 62 132 

65/80 126 110 0 135 58 1 

65/65 84 111 159 98 63 132 

65/50 84 112 69 98 57 69 

65/40 85 112 24 100 62 25 

50/50 85 114 0 97 63 1 

40/40 54 113 24 58 62 25 

40/80 40 113 0 52 63 1 

Precipitation 76 23 9 30 20 9 

 

 

 
Figure 2  Airborne multispectral image taken on July 30, 2015 at 
the USDA-ARS Limited Irrigation Research Farm in Greeley, CO, 
USA (Top).  The sunflower plots were in the western section and 

the maize plots were in the eastern section of the field.   
12 Irrigation treatments: 1 = 100/100, 2 = 100/50, 3 = 80/80,  

4 = 80/65, 6 = 80/40, 7 = 65/80, 8 = 65/65, 9 = 65/50,  
10 = 65/40, 11 = 50/50, 12 = 40/40, 13 = 40/80. (Bottom) 
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2.3.2  Ground measurements 
A neutron moisture meter (CPN-503 Hydroprobe, 

InstroTek, San Francisco, CA) was used to measure soil 
water content at the depths of 30 cm, 60 cm, 90 cm, and 
120 cm in the middle row of each plot. Soil water content 
(SWC) at the 0-15 cm layer was measured by a portable 
time domain reflectometer (MiniTrace, Soilmoisture 
Equipment Corp, Santa Barbara, CA).  The SWC 
measurement was taken twice to three times a week 
before and after irrigation; starting from the middle of the 
vegetative stage to the end of the crop growth season.  
Field capacity was estimated for each soil layer from 
SWC measurements obtained during the previous five 
years and current year.  The SWC measured by neutron 
attenuation was assumed to represent the soil profile 
within 15 cm of the measurement depth.  Because there 
was no evidence of water uptake from deeper soil layers, 
the observed SWD in each plot was calculated by 
summarizing soil water deficit from 0 to 1050 mm depth 
for maize and from 0 to 1350 mm for sunflower.  More 
detailed information about soil water measurement and 
soil deficit calculation can be found in DeJonge et al.[15] 
2.3.3  Remotely-sensed data 

The Utah State University (USU) airborne digital 
remote sensing system[23,24] was used to acquire two 
airborne multispectral images over the research area, 
around solar noon on July 30 (DOY 211) (Figure 1) and 
September 10 (DOY 253) 2015.  The imaging system 
consisted of three Kodak Megaplus digital frame 
cameras with interference filters centered in the spectral 
regions of green (0.545-0.560 m), red (0.665-0.680 m) 
and near infrared (0.795-0.809 m).  Another camera 
included in the system was an Inframetrics 760 
thermal-infrared scanner (8-12 m) to gain surface 
radiometric temperature over the field.  The spatial 
resolutions of the multispectral bands and thermal band 
were about 0.3 m and 1.0 m, respectively.  The white 
spots in the south side of the sunflower field indicated 
lack of stands because of planting skips (Figure 2).  
The pixels were excluded from analysis. Surface 
reflectance registered in the Red and NIR bands, form 
the airborne images, were used to determine OSAVI in 
Equation 10 (L = 0.16)[25]: 

(1 )( )L NIR REDOSAVI
NIR RED L
− −

=
+ +

        (10) 

Then LAI was determined from OSAVI in Equation 
(11)[26]:  

6 15.64(4 0.8) (1 4.73 10 )OSAVILAI OSAVI e− ×= × − × + × ×  

(11) 
Then fractional canopy ground cover was determined 

from LAI by Equation (12)[27]: 

  1 exp( 0.5 )cf LAI= − −           (12) 

The kcb_mid, kcb_ini, and kcb_end were obtained from the 
FAO-56 manual (kcb_ini, = kcb_end), and kcb_mid was adjusted 
based on local climate (wind speed, relative humility and 
crop height)[17].  The length of each crop period (initial 
period, developing period, mid-period and end period) 
were also used as suggested in the FAO-56 procedure[17].  
The kcb_mid value at the airborne imagery acquisition day 
was adjusted by fractional canopy cover (fc) derived from 
multispectral image.  When fc from multispectral image 
was greater than 0.8, kcb,i was equal to kcb_mid; when fc was 
smaller than 0.2, kcb,i was equal to kcb_ini, = kcb_end; and 
when fc ranged from 0.2 to 0.8, kcb,i was linearly increased 
from kcb_ini to kcb_mid

[17].  
Crop water stress index was calculated for each image 

using Equations (1)-(3) and the baseline coefficients of 
maize were Tc – Ta = –1.97VPD+2.34 and the baseline 
coefficients of sunflower were Tc – Ta = –2.40VPD+3.87.  
CWSI values from pixels of each plot were extracted and 
averaged to represent CWSI for the plot.  
2.4  Evaluation of optimized TAWr 

To evaluate the performance of the optimized TAWr 
method on the soil water deficit prediction, the soil water 
balance model with the optimized TAWr (Model-TAWr) 
was compared with the observed soil water deficit.  In 
addition, for comparison purpose, another simulation 
scenario was used to run the water balance model using 
empirical parameters, 7, 68, 20.25, and 120 mm for t1, tx, 
TAWmin, TAWmax, respectively (Model-FAO).  These 
parameters were set based on soil texture, the rooting 
depth and crop growth stage measurements.  Root Mean 
Square Error (RMSE), Nash-Sutcliffe coefficient (Nash), 
and Mean Absolute Error (MAE) were used to evaluate 
the goodness of model simulation[28,29].   
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3  Results and discussion 

3.1  Crop water stress index 
CWSI maps calculated from thermal imagery 

acquired on July 30 and September 10, 2015 are shown in 
Figure 3.  On July 30, maize plants were in the late 
vegetative growth stage and under deficit irrigation.  For 
example, the 40/40 and 40/80 treatments were irrigated 
only 40% of maximum ET water demand during that 
period.  During this period, the accumulated water stress 
was very high (high CWSI values).  Variations of CWSI 
within other treatment plots were not as obvious as those 
for treatments 40/40 and 40/80.  The variation of CWSI 
may have been caused by the irrigation applied on July 29.  
Soil surface was partially wet when the image was taken.  

Maize plants on Sept 10 were about two weeks under 
deficit irrigation treatment in the maturation stage; thus, 
CWSI increased.  Averaged CWSI values for each 
treatment are shown in Table 2.  For maize plants on Jul 
30, CWSI responded to deficit water treatment. CWSI 
value increased as irrigation amount decreased.  When 
the crop reached the maturation stage the CWSI values 
increased, especially in those treatments that had deficit 
irrigation treatment applied in both late vegetative and 
maturation stages.  That result (pattern) indicated that 
CWSI values indeed can reflect cumulated water stress 
during that crop growth stage.  Treatment 40/80 
depicted smaller CWSI values than those found for 
treatment 40/40, due to less water stress in the maturation 
stage. 

 
Figure 3  CWSI maps of study field on July 30 (Left) and September 10, 2015 (Right) 

 

Table 2   Average CWSI for each treatment for maize and 
sunflower on July 30 and September 10, 2015 

Maize Sunflower 
Treatment  

Jul 30 Sept 10 Jul 30 Sept 10 

100/100 0.07 0.26 0.33 0.02 

100/50 0.07 0.51 0.28 0.24 

80/80 0.10 0.43 0.39 0.14 

80/65 0.09 0.42 0.49 0.18 

80/40 0.14 0.63 0.39 0.41 

65/80 0.18 0.33 0.69 0.14 

65/65 0.22 0.61 0.62 0.24 

65/50 0.23 0.66 0.78 0.23 

65/40 0.20 0.66 0.68 0.39 

50/50 0.25 0.67 0.82 0.26 

40/40 0.40 0.74 0.82 0.48 

40/80 0.39 0.41 0.86 0.25 
 

Sunflower was planted about two weeks later than 
maize and canopy cover was relatively low on Jul 30 and 

water stress was shown clearly in the CWSI map.  
Average CWSI values for each treatment (Table 2) 
responded to water treatments with an average CWSI 
value of 0.31 for the 100% irrigation treatment, 0.42 for 
80% the treatment, 0.69 for the 65% treatment, and 0.83 
for the 50% and lower treatments.  Deficit irrigation was 
only applied in the late vegetative and maturation stages.  
All the sunflower plants received full irrigation and were 
taken out of water stress in the reproductive stage (Aug 
13 to Sept 2).  By Sept 10, only the treatments with 40% 
showed some level of stress (CWSI > 0.39).  

The relationship between CWSI and soil water deficit, 
estimated based on soil water content measurements, are 
given in Figure 4.  CWSI increased with increasing soil 
water deficit.  Although, a larger scatter of data points 
was observed for sunflower, for both crops, linear 
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regression relationships suggest that crop water stress 
calculated from canopy temperature could indicate soil 

water deficit in the root zone.  

 
Figure 4  CWSI of each treatment on two image days plotted against soil water deficit in maize (Left) and sunflower (Right) root zone 

 

3.2  Basal crop coefficient kcb 
The kcb maps calculated from multispectral imagery 

acquired on Jul 30 and Sept 10, 2015 are shown in  
Figure 5.  The kcb values in all maize treatments reached 
its maximum value, 1.2, on Jul 30, except for 40/40 and 
40/80 (kcb = 1.03).  The kcb value for sunflower did not 
reach its maximum on Jul 30 (43 days after planting).  
The kcb from treatment 100/100 sunflower was 0.96; 
which was significantly larger than those in 40/40 and 
40/80 (kcb = 0.70 and 0.74, respectively).  On Sept 10, 
maize already had reached the maturation period, and 
deficit irrigated plots were resumed on Aug 24.  A 
significant difference on kcb values between deficit 
irrigation treatments was observed.  For example, kcb 
from the 100/100 treatment was 0.88, significantly higher 
than kcb from 40/40 treatment (0.54).  One could also 

notice that kcb from 40/80 treatment (0.73) was also 
higher than that the corresponding kcb value from 40/40, 
due to a larger water application in 40/80 treatment in the 
maturation stage.  However, there was no significant kcb 
difference among treatments for sunflower on Sept 10 
due to the short period of resumed deficit irrigation.  
Deficit irrigation in sunflower plots was resumed on Sept 
3, thus deficit irrigation had not impacted kcb by Sept 10.  
However, we could still observe that treatment 40/40 had 
lower kcb (0.7) than 100/100 and 40/80 treatment (0.81 
and 0.75, respectively).  Thus, kcb derived from airborne 
multispectral imagery could reasonably describe the kcb 
development under deficit irrigation for both crops.  
This result is consistent with the conclusion reached in 
previous researches[30-35].  

 
Figure 5  Crop coefficient (kcb) maps of maize and sunflower on July 30 (Left) and September 10, 2015 (Right) 

 

3.3  Estimated vs. measured soil water deficit 
The optimal values of TAWmax are shown in Table 3.  

The proposed approach, using CWSI to optimize the soil 
water balance model, seems to produce reasonable values 

for the TAWmax.  The average value of field capacity in 
this experimental field was 0.20-0.24 m3/m3.  The root 
length distribution in the field varied considerably among 
treatments, where plants under deficit irrigation 
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treatments showed deeper root systems than fully watered 
plants[18].  Comas et al.[18] has found that maximum 
rooting depth for maize varied in 800-1050 mm in 2012.  
It is common to assume that soil volumetric water content 
at wilting point is 50% of field capacity[1].  Thus, the 
estimated TAWmax from the experimental data ranged in 
80-126 mm.  As shown in Table 3, the optimized 
TAWmax values for maize ranged from 71.5 mm for the 
65/65 treatment to 136 mm for the full irrigation 
treatment.  Sunflower has a generally deeper root system 
than maize and redistributes an even greater percentage of 
its roots to deeper soil depths[18].  Root depth has been 
found to range from 0.8 m to 1.5 m (FAO-56).  The 
optimized TAWmax values for sunflower were much 
higher than those in maize.  We also observed that the 
lowest optimized TAWmax values for both maize and 
sunflower were in treatments 65/65 and 65/50. 

 

Table 3  Optimized TAWmax using airborne thermal derived 
CWSI for each treatment in maize and sunflower 

Treatment Maize Sunflower 

100/100 136.33 159.95 

100/50 82.90 159.43 

80/80 93.41 159.38 

65/80 101.10 159.85 

65/65 71.53 132.24 

65/50 73.47 128.06 

65/40 106.70 159.95 

50/50 94.87 155.42 

40/40 87.43 152.37 

40/80 90.21 159.69 
 

The optimized model (Model-TAW) resulted in an 
improved estimation of soil water deficit compare to the 
FAO-56 soil water balance model (SWB Model).  Table 
4 details the statistical analysis of the comparison 
between the two SWB models.  By using TAWmax 
estimated from CWSI, the averaged Nash coefficient for 
all maize treatments increased from 0.17 to 0.72 and 
increased from 0.56 to 0.74 for sunflower.  The average 
RMSE and MAE for all maize treatments decreased from 
18.8 mm to 11.2 mm and from 15.4 mm to 8.6 mm, 
respectively, which reduced the RMSE and MAE by 40% 
and 44% compared to the original SWB model.  Same 
as maize, the average RMSE and MAE for all sunflower 
treatments decreased from 14.6 mm to 11.3 mm and from 
12.4 mm to 9.6 mm, respectively, which reduced both 

RMSE and MAE by 22% compared to the SWB model.  
Figure 6 plots the predicted soil water deficit by the 
optimized model and SWB model versus measured soil 
water deficit for treatments 100/100, 65/65, and 40/80, 
for instance.  In the fully watered treatment, the two 
models performed similarly.  Soil water deficit was 
maintained less than 60 mm for fully watered maize and 
about 80 mm for fully watered sunflower throughout the 
growing season.  The optimization procedure may not 
give an optimized TAWmax value for well-watered plots 
since the CWSI would be close to zero and the change of 
TAWmax would not substantially influence crop 
transpiration.  Both models showed the trend of 
increasing soil water deficit in the late vegetative stage, 
decreasing soil water deficit in the reproductive stage 
when full irrigation was applied, and increasing again 
towards the late season.  However, the optimized model 
using CWSI better responded to soil water deficit 
observation in treatment 65/65 and 40/80 than the SWB 
model, especially in the maturation stage, where the SWB 
model underestimated the measured soil water deficit. 

 

Table 4  Statistical analysis of modeled and observed soil 
water deficit (mm) by Model-TAW: soil water balance model 

with optimized TAW; and Model-FAO: soil water balance 
model with experienced TAW 

Optimized model Soil water balance model
Crop Treatment

Nash RMSD MAE Nash RMSD MAE

100/100 0.27 15.22 12.03 0.20 15.89 12.40

100/50 0.87 10.85 8.45 0.74 15.04 12.24

80/80 0.66 10.98 8.40 0.55 12.71 10.56

65/80 0.69 12.49 9.83 0.60 14.14 10.98

65/65 0.51 13.39 10.38 -1.82 32.24 25.61

65/50 0.80 10.02 7.64 -0.44 26.65 22.12

65/40 0.89 10.09 7.99 0.84 12.07 10.29

50/50 0.86 9.69 7.32 0.55 17.23 14.65

40/40 0.86 9.08 6.81 0.17 22.37 19.23

Maize 

40/80 0.78 10.51 7.54 0.26 19.39 16.04

100/100 0.32 17.66 15.49 0.09 20.36 18.14

100/50 0.88 11.15 9.02 0.78 15.31 12.98

80/80 0.69 11.67 10.31 0.42 15.98 13.00

65/80 0.64 10.46 8.96 0.29 14.65 12.23

65/65 0.75 9.91 8.16 0.73 10.32 8.13 

65/50 0.85 9.18 7.91 0.84 9.35 8.05 

65/40 0.85 11.94 9.50 0.73 16.00 13.16

50/50 0.88 8.80 7.39 0.78 11.88 10.01

40/40 0.86 11.12 9.32 0.76 14.19 12.27

Sunflower

40/80 0.66 11.69 10.04 0.22 17.59 15.83
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Figure 6  Comparison of the observations, the optimized daily soil water deficit with airborne imagery data 

 by Model-TAW, and FAO-56 SWB model 
 

4  Conclusions 

In this study, crop water stress index derived from 
airborne thermal imagery was incorporated into a soil 
water balance model to determine the total available 
water in the root zone and to improve the estimate of 
actual soil water deficit.  The TAWr was estimated by 
calibrating the soil water balance model using CWSI as 
an input.  A general agreement was found between the 
estimated soil water deficit from the proposed approach 
with measured soil water deficit in the deficit irrigation 
experiment for maize and sunflower.  The statistical 
analyses indicated that the TAWr estimated from CWSI 
significantly improved the estimation of soil water deficit 
values; which reduced the mean absolute error and root 
mean square error by 40% and 44% for maize and 22% 
for sunflower compared to the standard FAO-56 model.  
The proposed procedure works better for crops under 
deficit irrigation conditions.  It is anticipated that the 
approach presented here can be further improved if more 
airborne multispectral images are available for integration 
in the optimization procedure.  
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