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Abstract: Precision agriculture accounts for within-field variability for targeted treatment rather than uniform treatment of an 

entire field.  It is built on agricultural mechanization and state-of-the-art technologies of geographical information systems 

(GIS), global positioning systems (GPS) and remote sensing, and is used to monitor soil, crop growth, weed infestation, insects, 

diseases, and water status in farm fields to provide data and information to guide agricultural management practices.  Precision 

agriculture began with mapping of crop fields at different scales to support agricultural planning and decision making.  With 

the development of variable-rate technology, precision agriculture focuses more on tactical actions in controlling variable-rate 

seeding, fertilizer and pesticide application, and irrigation in real-time or within the crop season instead of mapping a field in 

one crop season to make decisions for the next crop season.  With the development of aerial variable-rate systems, low-altitude 

airborne systems can provide high-resolution data for prescription variable-rate operations.  Airborne systems for multispectral 

imaging using a number of imaging sensors (cameras) were developed.  Unmanned aerial vehicles (UAVs) provide a unique 

platform for remote sensing of crop fields at slow speeds and low-altitudes, and they are efficient and more flexible than 

manned agricultural airplanes, which often cannot provide images at both low altitude and low speed for capture of high-quality 

images.  UAVs are also more universal in their applicability than agricultural aircraft since the latter are used only in specific 

regions.  This study presents the low-altitude remote sensing systems developed for detection of crop stress caused by multiple 

factors.  UAVs, as a special platform, were discussed for crop sensing based on the researchers' studies. 
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1  Introduction 

In the past two decades, agriculture has been 
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significantly transformed from traditional farming to 

precision agriculture
[1,2]

.  Traditional farming counts on 

agricultural mechanization to treat crop fields uniformly, 

while precision agriculture accounts for within-field 

variability in soil, crop (pest, water and nutrient) stress, 

and yield using state-of-the-art information and spatial 

and spectral sensing technologies.  Precision farming 

realizes site-specific management for crop production 

from planting, fertilizer and pesticide application, and 

irrigation to harvesting and it handles in-field variability 

site-specifically, based on the local requirements within a 

field.  

The key technologies that enable precision agriculture 

are geographical information systems (GIS), global 
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positioning systems (GPS), remote sensing, and their 

integration with agricultural mechanization
[3,4]

.  With 

these technologies, management decisions can be made 

on when, where, what, and how to take actions in 

variable-rate seeding, and variable-rate application of 

fertilizers, pesticides, and irrigation.  

Remote sensing observes agricultural fields in terms 

of soil condition, crop growth, weed infestation, insects, 

plant diseases, and crop water requirements and provides 

prescription data to guide the operation of precision 

implements and variable-rate systems on aircraft
[5,6]

.  

Modern precision agriculture began with mapping of crop 

field variability to support agricultural planning and 

decision making.  Realization of the decisions calls for 

variable-rate technology to implement tactical actions in 

seeding, fertilizer/chemical application, and irrigation 

instead of only mapping the field one year for 

improvements in a subsequent year.  Remote sensing in 

precision agriculture requires observations on a small 

scale to map within-field variability in a farmed area to 

acquire high-resolution data for effective prescription of 

variable-rate equipment.  At early stage, for agricultural 

applications, most airborne imaging systems used either 

video or single band cameras.  The imaging systems 

were typically built with several still cameras lined up 

together and each of the cameras with a specific filter lens 

imaging in a specific band, such as blue band, green band, 

red band, NIR (Near InfraRed) band, and even thermal 

band
[7-14]

.  This arrangement typically has the problem 

of misalignment of images representing the different 

bands.  Although the camera lined up systems are still 

being developed
[15,16]

, it is preferable for portable single 

camera systems to line up the images from the different 

bands with built-in devices and filters to monitor the 

fields at low altitude so that the composite image can be 

immediately available for rapid image processing.  In 

precision agriculture, low-altitude remote sensing (LARS) 

method is effective and versatile to provide timely and 

accurate data compared to satellite, high-altitude, and 

ground-based remote sensing
[4,17,18]

.  LARS systems 

were developed on manned agricultural airplanes and 

unmanned aerial vehicles (UAVs)
[19-21]

.  UAVs provide 

a unique platform for continuous remote sensing of crop 

fields at ultra-low-altitudes
[22]

.  The objective of this 

research was to introduce the LARS systems we have 

developed and evaluated for detection of crop stress 

caused by multiple factors.  The applications of the 

systems were also been presented in the paper.  UAVs, 

as a special platform, were discussed for crop sensing 

based on our studies.  

2  LARS platforms/systems 

There are two LARS platforms: manned agricultural 

airplanes including single-engine fixed-wing airplanes 

and rotary helicopters and UAVs including fixed-wing, 

rotary helicopter, and multi-copters which are popular in 

recent years.  To build a LARS system, the imaging 

system with one or more cameras can be mounted on an 

airplane to fly over and monitor agricultural fields. 

2.1  Imaging systems on manned agricultural aircraft 

We designed and built a slide mount that fixes 

cameras, instrumentation, and any data acquisition 

systems in the belly of an Air Tractor 402B agricultural 

aircraft.  The mounting system was approved by the 

FAA (Federal Aviation Administration, Washington, DC).  

Then, the camera was mounted pointing down (10
o
 back 

along the vertical line to compensate for the tilt up of the 

plane head when it flies) so its position was nadir.  The 

camera can be triggered manually by the pilot or an 

on-board operator of the camera, or controlled by a 

control system installed on a laptop connected to the 

camera.  Huang et al.
[19]

 developed a multispectral 

imaging system on a Cessna 210 (Cessna Aircraft 

Company, Wichita, Kansas) and later built an automated 

multispectral imaging system on the Air Tractor 402B 

agricultural aircraft (Air Tractor, Inc., Olney, Texas).  

On the Cessna 210, the camera can be operated manually 

by an on-board technician.  However, the Air Tractor 

402B has no space for the technician to be on board.  

For the flight at the altitude of 1000-3500 m, the pilot can 

reliably trigger the camera, but for LARS typically at 

200-500 m, it is very difficult for the pilot to trigger the 

camera accurately over the target field.  Therefore, an 

automated camera triggering scheme was needed for 

imaging from the plane. 

On the Air Tractor 402B, imaging systems utilizes the  
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following camera systems: Tetracam ADC (Tetracam, 

Inc., Chatsworth, CA), Electrophysics PV320T thermal 

camera (Sofradir EC, Inc., Fairfield, NJ), and MS 4100 

(formerly Geospatial Systems, Inc., West Henrietta, NY) 

that have been built, developed and used. Tetracam ADC 

is a low-cost CMOS (Complementary Metal–Oxide– 

Semiconductor) multispectral camera.  A Tetracam 

proprietary software package, SensorLink, was used to 

enable camera triggering with pre-defined waypoints.  

However, when used with LARS missions, triggering was 

inaccurate and unreliable
[19]

.  This was caused by 

mismatch of minimal flight speed and slow GPS updating 

speed, making it difficult to image the correct field 

location.  The electrophysics thermal camera was used 

to image and invert the ground surface temperature and 

was operated to stream continuous digital video to the 

hard disk of an on-board Toshiba laptop computer.  A 

35 min running at 10 frames/sec acquisition speed used 

about 4 GB of hard disk space.  Image data could, 

therefore, be archived on DVD if desired.  The MS-4100 

camera is a high-performance multispectral 3-CCD 

(Charge-Coupled Device) color/CIR (Color Infrared) 

digital camera.  This camera is the upgrade of the 

previously available DuncanTech MS 3100 and 2100 

cameras.  The imaging system with automated camera 

triggering function was initially developed and applied on 

the Air Tractor 402B in 2009
[6]

.  Within the last few 

years, the MS 4100 has been moved to Optech, Inc. 

(West Henrietta, NY) and technical support of the control 

software was discontinued due to the termination of the 

developer’s business.  Even so, the system we developed 

is still been maintained well, upgraded continuously and 

worked reliably on the Air Tractor 402B to image the 

crop fields in the research farms of United States 

Department of Agriculture (USDA), Agricultural 

Research Service (ARS) in Stoneville, Mississippi. 

The MS 4100 camera provides digital images with a 

1920 (horizontal)×1080 (vertical) pixel array in each 

sensor band.  We equipped the camera with a Nikon  

14 mm, f/2.8 AF-D ED lens (Nikon Corporation, Tokyo, 

Japan) and 114
o
 wide angle of view.  The camera has 

two spectral configurations: RGB (Red Green Blue) for 

high quality color imaging and CIR for multispectral 

applications.  The images contain four broad spectral 

bands between 400 and 1000 nm, i.e. blue band (460 nm 

with 45 nm bandwidth), green band (540 nm with 40 nm 

bandwidth), red band (660 nm with 40 nm bandwidth), 

and NIR band (800 nm with 65 nm bandwidth).  These 

bands approximate corresponding Landsat satellite 

thematic mapper bands (NASA, Washington, D.C.; 

USGS, Reston, VA).  The MS 4100 can be configured 

to provide RGB and CIR images concurrently or 

separately.  We adopted the base configuration that 

supports the three-tap configuration running at 8 bits per 

color plane (i.e. 24-bit RGB) for running RGB or CIR 

(green, red and NIR) configuration separately. 

The MS 4100 camera was configured for the digital 

output of image data with CameraLink enclosed in a 

Magma PCI (Parallel Card Interface) box (Magma, San 

Diego, CA) to host CameraLink communication with the 

camera.  The CameraLink connected and controlled with 

the NI IMAQ PCI-1424/1428 frame grabber (National 

Instruments, Austin, Texas).  With the software 

DTControl-FG (formerly Geospatial Systems, Inc., West 

Henrietta, NY) and the CameraLink configuration, the 

camera acquires images from the frame grabber directly 

from the DTControl program.  Dragonfly
®

 (formerly 

TerraVerde Technologies, Inc., Stillwater, OK) is 

navigation software with a powerful function to 

automatically trigger the camera based on the target field 

shapefile polygon using any submeter-accuracy GPS 

receiver.  Dragonfly configures the camera control based 

on GPS navigation.  As long as GPS coordinates touch 

the edge of the target field shapefile polygon, the camera 

automatically acquires images continuously with a preset 

vertical/horizontal overlay (50% as default) until the 

aircraft travels through the field polygon under GPS 

control.  This shapefile-based trigger scheme worked 

especially well with LARS missions as compared with a 

waypoint trigger scheme.  The waypoint triggering 

scheme may miss the desired location due to the 

mismatch between the flight speed and GPS updating 

frequency (they are very sensitive when the airplane flies 

at low altitude).  Figure 1 indicates that the MS 4100 

camera is mounted on the belly of the Air Tractor 402B 

behind with a Magma PCI box for data communication 



4   July, 2016                Int J Agric & Biol Eng      Open Access at http://www.ijabe.org                  Vol. 9 No.4 

and transferring and a rugged laptop hosting the 

Dragonfly
®

 software and the target field shapefiles.  

 

Figure 1  MS 4100 camera-based multispectral imaging system on 

the Air Tractor 402B behind with data-communication Magma PCI 

box and rugged laptop hosting navigation software 
 

Raw image data from the MS 4100 are digital counts, 

which must be corrected due to variations of solar 

illumination and atmospheric conditions.  This is 

essential if images acquired on different dates are to be 

compared.  The correction of MS 4100 images was 

conducted by radiometric calibration to convert digital 

numbers of the CIR images to percent reflectance.  In 

the process of radiometric calibration, an IRR 180 

irradiance radiometer (formerly TerraVerde Technologies, 

Inc., Stillwater, OK) was used to record solar irradiance 

in the field to normalize images.  This radiometer was 

set near the field on the day of field imaging, and the 

signals were automatically recorded at a preset interval.  

After imaging, the data were uploaded to the computer.  

With the uploaded data, the dedicated image correction 

software, Image Correction Center software (former 

TerraVerde Technologies, Inc., Stillwater, OK) was used 

to filter anomalies caused by clouds and normalize the 

images with radiance data generated from MS 4100 

camera calibration data to produce the final reflectance 

images.  

2.2  UAV-based imaging system 

Agricultural UAVs are typically low cost, light 

weight, operated at low flight speed, and have relatively 

short endurance.  Fixed-wing airplanes, rotary 

helicopters and multi-rotor copters have been developed 

for LARS over agricultural fields.  This research 

focused on an octocopter LARS platform because in 

recent years, use of multi-rotor copters has been increased 

dramatically in research and applications due to their 

capabilities for precise control and stability.  

An RTF X8 octocopter (3D Robotics, Berkeley, CA) 

was customized to capture images over crop fields.  This 

octocopter was designed to fly 15 min with a payload 

capacity of 800 grams.  It is controlled by the Pixhawk 

autopilot system (3D Robotics, Berkeley, CA) for ability 

to fly fully autonomously during take-off, waypoint 

scanning and landing.  A GoPro HERO3+ camera 

(GoPro Inc., San Mateo, CA) was mounted on the Tarot 

T-2D brushless gimbal with the octocopter to stabilize the 

orientation of the camera during flight.  The GoPro 

camera captures digital still photos or video in 

high-definition through a wide-angle lens and can be 

triggered automatically through autopilot with mission 

planning. 

To minimize the geometric distortion of the images 

over the field, the original wide-angle lens of the GoPro 

camera was replaced with a 2.97 mm f/4.0 low distortion 

lens.  The lens has a 95
o
 of field of view (FOV), which 

can offer 3 cm/pixel ground spatial resolution of the 

images at a flight altitude of 50 m.  Figure 2 shows the 

LARS system built on the X8 octocopter with a GoPro 

HERO3+ camera with the 95
o
 FOV low distortion lens. 

 

Note: The images acquired from the GoPro camera in flight were geo-tagged and 

processed for the orthomosaic image and point cloud data in 3D coordinate 

system to represent surface features. 

Figure 2  X8 octocopter with a GoPro HERO3+ camera and low 

distortion lens 

3  Systems applications and field evaluation 

3.1  Relationship of image data and crop yield 

Estimation of crop yield at different scales has been a 

primary concern in agricultural remote sensing.  

Field-scale evaluation to relate image data to crop yield is 

important for estimating crop yield. 
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3.1.1  Aerial MS 4100 CIR imagery  

The MS 4100 multispectral imaging system on the 

Air Tractor 402B has been used to acquire imagery over 

crop fields in the growth season for relating image data to 

crop yield.  One of the fields we worked on for the study 

is in the research farm of USDA, ARS, Crop Production 

Systems Research Unit in Stoneville, Mississippi (latitude: 

33.446485
o
; longitude: -90.869923

o
).  Figure 3 shows 

the Google
TM

 Earth map (Google Inc., Mountain View, 

CA) of the 9.5 hm
2
 field.  This field contains four 

subfields from south to north labeled as A, B, C and D.  

Fields A and B are a mixture of sandy and clay soils, and 

this variability has shown a commensurate variability in 

crop growth potential, also depending on rainfall
[23]

.  

Fields C and D are in a mix of Tunica and Sharkey clay.  

At the center of field C, there is a center pivot irrigation 

system.  The three other fields use furrow irrigation. 

 

Figure 3  Google map of field A, B, C and D with soil type 

overlay from SoilWeb (University of California at Davis and 

USDA Natural Resources Conservation Service) 
 

In 2009, the field was imaged with the MS 4100 

multispectral imaging system on the Air Tractor 402B 

from June to September during the crop growth season. 

During this season, cotton was planted in fields A and B, 

with soybean planted in fields C and D.  Flight altitude 

was held close to 480 m, resulting in a ground resolution 

of 77 cm/pixel.  Figure 4 illustrates CIR (Color Infrared) 

and NDVI (Normalized Difference Vegetation Index) 

images of the field on June 17th, July 9th, August 13th 

and September 2nd in 2009.  NDVI was calculated as 

(NIR-Red)/(NIR+Red) where NIR were broadband data 

extracted from the near-infrared region of the spectrum, 

MS 4100 camera specifies this band center at 800 nm 

wavelength (65 nm bandwidth); Red signifies broadband 

data extracted from the red region of the spectrum, MS 

4100 camera specifies this band centered at 660 nm   

(40 nm bandwidth).  NDVI is the most popular 

vegetation index calculated from remotely sensed data to 

characterize plant vigor
[24]

.  Images indicated that: 

(1) On June 17th, the cotton on fields A and B was in 

seedling stage and the canopy of soybean in fields C and 

D was about to close; 

(2) On July 9th, the canopy of cotton in fields A and 

B was about to close.  The canopy of soybean in fields C 

and D was closed; 

(3) On August 13th, the canopy of cotton and soybean 

was fully closed and the cotton was maturing; 

(4) On September 2nd, the cotton in fields A and B 

was ready to be defoliated; soybeans in fields C and D 

were ready for harvest.  
 

   

             a. June 17, 2009                  b. July 9, 2009 

  

c. August 13th, 2009             d. September 2nd, 2009 

Note: CIR images: reddish color with strong vegetation coverage; NDVI: white 

color with strong vegetation coverage 

Figure 4  MS 4100 CIR and NDVI images 
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The NDVI image on June 17th showed a bare soil 

signature in fields A and B, while the CIR image showed 

the brightness variation of the soil matching with the soil 

type profile in the field.  Both CIR and NDVI in the 

images on July 9th showed the soil effect on cotton 

growth matching with the soil type profile in the field.  

The two images also showed the effects of irrigation in 

fields C and D, especially the pattern with the center 

pivot in field C.  Figure 5 shows the crop yield overlay 

of the field on the Google Earth map.  Cotton yields in 

fields A and B were higher in the area of clay soil (Sb) 

than in the area of sandy soil (Cn and Ch).  This 

variation was clearly characterized by the CIR and NDVI 

images right before canopy closure (for example July 9th, 

2009).  However, when the canopy was closed (August 

and September), NDVI was saturated, and image features 

were no longer significant.  So, the optimal time to 

estimate cotton yield with MS 4100 imagery could be just 

before canopy closure.  The effect of irrigation on 

soybean in field C with center pivot was obvious, as 

shown in Figure 5.  The effect of furrow irrigation in 

field D was indicated in Figure 5 as well, but this field 

was irrigation limited.  This was characterized better in 

early the images of June and July.  

 

Figure 5  Google Earth map of fields A, B, C and D with crop 

yield data and soil type overlays 
 

3.1.2  UAV GoPro imagery 

Color images acquired by the GoPro camera on the 

X8 octocopter were geo-tagged and processed using 

DroneMapper at droneMapper.com for various products, 

including orthomosaic images, digital surface model 

(DSM) images, and point cloud data.  These products 

can provide a variety of applications from field vegetation 

signature identification to field surface feature extraction.  

In fields A and B (Figure 3), an experiment was 

conducted for studying soybean injury responding to 

different doses of dicamba herbicide, in June, 2014.  

After the experiment, 550 images were acquired by the 

GoPro camera on the X8 octocopter flying over the field 

in late July, 2014, with flight altitude of 45 m, resulting in 

2.7 cm/pixel ground spatial resolution.  Among the 550 

images, 60 images were selected, geo-tagged and 

mosaicked to cover the whole field.  With 60 images of 

the field, the 3D point cloud data were generated, which 

is in the three-dimensional coordinate system of (X, Y, Z) 

to represent surface elevation of the field.  With the 

point cloud data around the soybean canopy, the base 

plane of the field was interpolated.  Then, the 

subtraction of field base plane point data from field 

surface point data could provide an approximation of 

plant height, which is an important bio-physical indicator 

of soybean yield.  Figure 6 indicates that the subtraction 

could approximate the plant height well (R
2
=0.92) with a 

good estimation of soybean yield (R
2
=0.90). 

 

a. Soybean plant height estimation vs. field measured values 

 

b. Soybean plant height estimation vs. yield 
 

Figure 6  Estimated soybean plant height and yield from GoPro 

images on the X8 octocopter 
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3.2  Characterization of crop herbicide injury with 

image data 

Spray drift of herbicides onto off-target sensitive 

crops could reduce yield and quality, and this is of great 

concern to growers and pesticide applicators.  Detection 

of herbicide injury using LARS image data can be a quick 

and cost effective method of inferring this damage, 

compared to conventional, tedious method of measuring 

plant biological responses.  Our research determined the 

effect of herbicide on crop damage related to yield 

through LARS image analysis. 

3.2.1  Aerial MS 4100 CIR imagery  

Glyphosate [N-(phosphonomethyl) glycine] is the 

most commonly applied, non-selective herbicide to 

manage a broad spectrum of broadleaf and grass weeds.  

With the increased usage of glyphosate due to the 

adoption of genetically modified (GM) crops, which are 

resistant to glyphosate (GR), glyphosate drift onto 

non-target crops from ground or aerial applications is a 

concern.  LARS has been conducted using MS 4100 

multispectral imaging system on the Air Tractor 402B to 

characterize crop injury using remote sensing parameters 

as a surrogate of plant biological responses. 

A field experiment was conducted in 2011 in fields A 

and B (Figure 3).  In the field, cotton, soybean and corn 

were planted (Figure 7).  One of the eight blocks from 

south to north was divided into four 8-row subplots.  

Each of the subplots was the smallest unit for 

experimental treatments.  Non-glyphosate-resistant 

(non-GR) corn was planted on April 19th and non-GR 

cotton and soybean were planted on May 9th.  

Glyphosate was applied using a tractor-mounted sprayer 

with Tee Jet 4003 standard flat-spray nozzles delivering 

140 L/hm
2
 of water at 193 kPa, four to five weeks after 

each crop was planted.  For corn, application of 

glyphosate was made on May 17th, when the plant was at 

the 4-5 leaf stage.  Glyphosate rates used were 0.01X, 

0.05X, 0.1X, 0.2X, 0.5X and 1.0X [X=0.866 kg ai/hm
2
,
 

represents the recommended use rate of the commercial 

formulation of potassium salt of glyphosate, Roundup 

WeatherMax® (Monsanto Co., St Louis, MO)].  

Completely randomized block design, replicated four 

times as shown in the figure was used.  Similarly, for 

cotton and soybean, application of glyphosate was made 

on June 8th, when the cotton was at the 4-5 leaf stage and 

the soybean was at the 4-5 trifoliolate-leaf stage, at the 

rates of 0.1X, 0.25X, 0.5X, 1.0X and 2.0X for cotton and 

0.1X, 0.2X, 0.4X, 0.5X and 1.0X for soybean.  

 

Figure 7  Overlay of MS 4100 CIR image on June 14th, 2011, 

experimental field layout, and soil type profile on Google Earth 

map for 2011 crop glyphosate injury study 
 

Plant biological responses of each crop were 

measured 1, 2 and 3 weeks after treatment (WAT).  The 

measurements were in-situ measured plant height and 

in-situ sampled leaves for determination of plant dry 

weight and chlorophyll content in laboratory.  Aerial 

MS 4100 CIR imageries were acquired for corn 1, 2 and  

4 WAT, on May 5th, June 1st and June 14th, respectively, 

and for soybean and cotton 1 and 3 WAT, on June 14th 

and June 29th, respectively.  The flight altitude was held 

around 380 m in the flights, resulting in a ground 

resolution of 60 cm/pixel.  The CIR images were 

processed to generate various vegetation indices, 

including NDVI, SAVI (Soil Adjusted Vegetation 

Index)
[25]

, RVI (Ratio Vegetation Index) and GNDVI 

(Green NDVI), to demonstrate the vegetation responses 

to glyphosate doses at each subplot.  SAVI was used to 

characterize the effect of soil background at the early 

growth stage of the crops and calculated as 

[(NIR-Red)/(NIR+Red+L)]·(L+1) where L is an 

adjustable factor.  When L = 0, SAVI = NDVI. Typically 

preset L = 0.5. RVI = NIR/Red
[26]

. GNDVI = (NIR-Green)/ 

(NIR+Green)
[27]

 where Green is the broadband data 
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extracted from the green region of the spectrum MS 4100 

camera specifies at 540 nm with 40 nm bandwidth.  Our 

study indicated that although the performance of different 

variables varied, plant height correlated well with plant 

biological responses and NDVI for characterization of 

crop injury from glyphosate.  Figures 8, 9 and 10 show 

the correlations between plant height, NDVI and yield of 

corn, cotton and soybean after treatment and indicate that 

NDVI is a good surrogate of plant height to characterize 

crop injury from glyphosate with yield. 

 
a. June 1st, 2011 

 

b. June 14th, 2011 

Figure 8  Correlations between plant height, NDVI and yield of corn on (a) June 1st, 2011 (b) June 14th, 2011 

 

a. 1 WAT 

 

b. 3 WAT 

Figure 9  Correlations between plant height, NDVI and yield of cotton (a) 1 WAT (b) 3 WAT 
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a. 1 WAT 

 

b. 3 WAT 

Figure 10  Correlations between plant height, NDVI and yield of soybean on (a) 1 WAT (b) 3 WAT 

 

3.2.2  UAV GoPro imagery 

Dicamba (3, 6-dichloro-2-methoxybenzoic acid) is an 

herbicide used to control many broadleaf weeds in corn 

and sorghum.  It could be an option to combat 

glyphosate-resistant weeds in dicamba-resistant cotton, 

corn, and soybean when commercialized.  Although the 

release of dicamba-resistant crops is still pending 

approval, off-target dicamba drift from routine use onto 

susceptible crops will be a concern.  In Mississippi, 

there has been one dicamba drift complaint in 2012 and 

2013 (Source: John Campbell, Bureau of Plant Industry, 

MS Dept. Agriculture and Commerce).  With the 

adoption of the dicamba-resistant crops in the near future, 

there will be greater concerns of increased dicamba drift 

complaints. 

Aerial multispectral images were obtained to assess 

crop injury from different doses of dicamba using aerial 

MS 4100 CIR imagery for soybean.  However, 

following flight of the Air Tractor 402B at 500 m height 

(resulting in a ground resolution of about 0.8 m/pixel), it 

was difficult to differentiate vegetation from soil 

background to accurately characterize soybean injury, 

especially at the stage of a few trifoliate leaves.  UAVs 

can be used here to provide lower altitude imagery at 

slow speeds resulting in imagery of more adequate 

resolution.  If the customized GoPro camera on the X8 

octocopter flies over the field at an altitude of 50 m, a   

3 cm/pixel ground spatial resolution is achievable.  The 

GoPro images could be used to remove the soil 

background from vegetation, and allow differentiation of 

weeds from crop.  One disadvantage of GoPro images is 

that they only have visible bands but no NIR band, so 

NDVI cannot be generated.  A compromise is to use the 

band data of red, green, and blue to extract plant 

photosynthetic vigor and pigment features. 

Figure 11 shows the soybean plots treated with 

different dicamba doses: 0 (control), 0.05X, 0.1X, 0.2X, 

0.3X, 0.5X and 1.0X (X=0.56 kg ae/hm
2
).  The entire 

field was laid out in a completely randomized block 

design with four replications.  The image was processed 

to convert from RGB (red, green and blue) space into 

HSV (hue, saturation and value) space to segment out the 

crop signatures in each plot from weeds and soil 

background, and then normalized difference 

photosynthetic vigor ratio (NDPVR) was calculated with 

the pixels of the crop.  The calculated NDPVRs were 

averaged on each plot for analysis.  Figure 12 shows the 

soybean yield estimation based on NDPVR extracted 
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from the UAV images (same set as 3.1.2) with dicamba 

treatments in different plots.  This figure also shows a 

monotonically decreasing trend of NDPVR with the 

increase of dicamba dose. NDPVR is the normalized 

difference version of PVR (photosynthetic vigor ratio) to 

use the green band, as a reference band, and the strong 

chlorophyll absorption red band
[28]

.  

 

Figure 11  Field layout for soybean injury experiment 

 

a. Soybean yield estimation from NDPVR with different dicamba doses 

 

b. Relationship between NDPVR and dicamba dosage 

Figure 12  Soybean yield estimation based on NDPVR extracted 

from the UAV images with dicamba treatments in different plots 

4  Conclusions 

Our development and field evaluation indicates that: 

1) LARS is a versatile and effective platform for 

providing guiding data and information for precision 

agriculture; 

2) UAV-based systems can complement use of 

manned aircraft systems in LARS; 

3) UAV-based systems can also be used standalone to 

provide data for crop management in the level of leaf, 

canopy, field and even farm. 

LARS has great potential to provide high-resolution 

images of crop fields for improved crop management in 

precision application of crop production and protection 

materials. 
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