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Abstract: It is difficult to solve the structural problems related to agricultural engineering, due to the wide ranges of the means 
of related variables and complex structural shapes.  For these reasons, discrete models are required that are able to replace or 
simplify solid structure components used in traditional analysis methods.  Therefore, the objective of this study was to develop 
a regular truss structure model that behaves the same way as a solid structure.  It was assumed that if a unit element consists of 
truss elements with each hinge at the end of the element and the size of the element is infinitesimal, the stress distribution and 
displacement field will be constant throughout the domain of the unit element.  Additionally, the behavior of the truss element 
was assumed to be in a linear state in a two-dimensional plane.  The law of energy conservation, based on the theory of 
elasticity, was applied to determine the equilibrium conditions between discretized and solid elements.  The restrictive 
condition that we obtained revealed that applications are limited to only ideal elastic materials with a Poisson’s ratio of 1 to 3.  
The volumetric ratio of the equivalent truss to the continuum structures was 3:1, regardless of the size or number of the mesh.  
To calculate the internal stress and strain of the unit element, the geometric relationships of each truss member, which has its 
own role against different stress directions, were used.  The calculated von Misses stresses were used to verify this model.  
Stress concentrations, as explained based on Saint Venant’s principle, were also observed in the equivalent truss structure 
model.  The main stress paths, indicating the areas where reinforcement bars should be placed, were successfully shown 
without the requirement that each element be transformed in the direction of principal stress; this was done by eliminating 
elements with only compressive and near-zero stresses. 
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1  Introduction 

Traditional structure analysis methods lead to longer 
computational times because they use solid elements in 
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order to enable numerous degrees of freedom.  
Continuum models also require complex processes to 
execute reliability analyses because there is no way to 
automatically calculate failure modes.  In addition, 
continuum models have difficulty expressing crack 
propagation because crack propagation is governed by a 
discrete fracture mechanism, whereas solid elements are 
based on continuum theory.  To overcome these 
shortcomings, a few equivalent structure models that have 
the same behavior as continuum structures have been 
developed using discretized elements.  

In the last two decades, equivalent truss structure 
models have been used to execute topology designs of 
two-dimensional continuum structures.  In these studies, 
the continuum that was used to show elastic behavior was 
discretized by regular lattice unit cells suggested by the 
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so-called cellular automata (CA) concept.  The lattice 
cell consisted of one node at the center of the cell 
surrounded by eight additional nodes, as suggested by 
Moore’s neighborhood rule[7,12].  To maintain the 
balance of the system, each cell transfers its redundant 
value to its neighbors, as dictated by the local rules, 
which define the relationship between the center cell and 
its neighboring cells.  There was no need to set up a 
governing equation to satisfy the whole domain.  
Therefore, cellular automata could be used as an 
alternative for simulating unknown physical phenomena. 

Earlier applications of cellular automata mainly 
concentrated on shape optimization[2,4,5,13,15].  The 
reference values or ratios were calculated and updated at 
each designated cell by applying local rules.  However, 
since the local rules were determined by numerical 
experiences, the relationship between the mathematical 
rule and topology optimization can change depending on 
designer opinion.  Other approaches have used the 
traditional Moore’s neighborhood, which is split into four 
regularly spaced quadrants without connectivity in the 
diagonal directions[1].  These design and analysis rules 
were derived based on the continuous optimality criteria, 
which were interpreted as the local Kuhn-Tucker 
conditions and the principle of minimum total potential 
energy, respectively.  The topology was regularized 
based on the simple isotropic microstructure with 
penalization (SIMP) method for each time step[6].  In the 
literature, an evolutionary structural optimization (ESO) 
technique has been applied to automatically build up the 
strut-and-tie model using its own terminal criteria, and a 
finite element method (FEM) based on the plane stress 
element has been used for design and analysis.  The 
literature has also introduced a special condition (the 
so-called CA constraint) to minimize the variation of the 
equivalent stress of neighboring cells with respect to 
variation in the thickness of the updated cell. 

In order to improve the idea of discretization, which 
is one of the merits of cellular automation, small square 
cells were replaced by equivalent truss structure units, 
and the discretized structure was analyzed by repeating 
the static equilibrium condition at each node throughout 
the whole domain.  The stress ratio (SR) method, using 

von Misses stress, was applied to the design rule.  For 
these reasons, this method can adopt a parallel computing 
system, which significantly decreases computational time.  
This is accomplished without having to create a global 
stiffness matrix, which was a requirement of previous 
methods[10].  Another study applied the cellular automata 
paradigm and the equivalent truss model to the geometric 
nonlinear topology design of continuum structures[14].  
This heuristic approach, changing the density 
interpolation scheme in order to consolidate the void and 
solid regions, has been regularly employed to prevent a 
checkerboard pattern from occurring during simulation.  
In other research, geometric and geometric/material 
nonlinear topology designs of truss structures have been 
explored[3,8].  The SIMP technique was expanded to the 
simultaneous fiber path and topology design of 
anisotropic lamina in a cellular automata framework[9].  
Displacements were sequentially updated to satisfy the 
local equilibria of CA cells.  Fiber angles and density 
measurements were also updated based on the optimality 
criteria for a minimum compliance design.  The hybrid 
cellular automaton (HCA) methodology, inspired by the 
biological process of bone remodeling, was developed for 
both topology and shape optimization of continuum 
structures[11].  In bone remodeling, cells with low elastic 
modulus values are removed and nearby cells create a 
new cell in the empty surrounding space.  This approach 
creates structures that are similar to the ones observed in 
bird bones. 

However, most previous studies have concentrated 
only on topology optimization paradigms (based on 
cellular automata) as opposed to attempting to improve 
the truss structure model that is equivalent to the 
continuum.  Therefore, the objective of this 
investigation was to develop an advanced regular truss 
structure unit where each member had only hinges at both 
ends of the element; the analysis results were validated by 
comparison with the continuum solid model and used to 
arrange reinforcement bars in a practical manner. 

2  Basic assumptions of discretized models 

2.1  Relationship between stress and strain 
Normal and shear stresses should be taken into 
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consideration simultaneously for a discretized model 
under plane stress.  The unit under normal stresses 
shows linear-elastic behavior in the direction of the 
normal stresses as well as deforms in a direction 
perpendicular to the normal stresses.  Most materials 
that have isotropic elastic properties are subject to the 
transverse deformation in accordance with Poisson’s ratio 
when normal stresses are applied.  These units can also 
experience coplanar stresses, referred to as shear stresses, 
parallel to the cross-section on which the normal stress is 
applied.  This deformation is related to a change in the 
angle at the vertex.  Therefore, the normal and shear 
stresses should be included in any discretized unit under 
isotropic elastic conditions, as shown in Figure 1. 

 
Figure 1  Diagonal deformation by stresses 

 

2.2  Basic shape of discretized model 
Consideration may be given to the use of truss 

elements that are able to discretize a continuum structure.  
The discretized basic unit consists of truss elements that 
should be structurally stable for building a certain 
structure.  A triangle is suitable as the basic shape of a 
discretized model because it is stable in itself and can also 
be easily expanded into various shapes.  Additionally, 
discretized units can be made up of combinations of any 
triangular shape, serving as alternatives if the stable 
conditions are structurally satisfied, as shown in Figure 2. 

 
Figure 2  Feasible shapes of discretized units equivalent to a solid 

element 
 

2.3  Discretized triangular unit 
A great deal of research has been done to create 

efficient mesh shapes that contribute to mesh quality; the 
generation of an appropriate mesh type guarantees 
accurate analysis results in any related problems.  

Among all shapes, a triangular element is generally 
utilized as the basic unit and can maximize the 
effectiveness of structural modeling with fewer elements.  
However, the unit element of a solid structure assumes 
the rectangular shape as its basic shape so that normal and 
shear stresses can be expressed symmetrically and 
simultaneously.  In order to discretize the normal and 
shear stresses that occur in the element into the equivalent 
member forces of any triangular truss unit, an exact 
understanding between the rectangular solid element and 
the triangular truss unit is required (Figure 3).  

 
Figure 3  Unknown relationship between the solid element and the 

irregular truss unit 
 

Therefore, the following transformation procedures 
are suggested for the construction of triangular truss 
meshes in the domain.  First, the normal and shear 
stresses are computed via structural analyses based on 
continuum mechanics.  Second, the principal stresses are 
calculated such that the normal and shear stresses are 
expressed only as tensile and compressive stresses.  
Truss members are laid in sequence in the directions of 
the principal stresses, as shown in Figure 4.  Finally, 
analysis of the truss structure is carried out (as opposed to 
analysis of the continuum structure).  Unfortunately, this 
method requires continuum analysis in order to complete 
equivalent truss structure analysis because it necessitates 
the use of an automated shape-optimization modeling 
technique to arrange the truss members in the same 
direction, which is equivalent to the principal stresses.  
Additionally, continuum analysis must be continually 
repeated whenever the shape of the structure changes; this 
is due to the occurrence of partial destruction, large 
deformations, and other factors.  Therefore, there is a 
limit to its general application because it demands 
complicated and unformulated processes when the 
continuum structure is transformed into the equivalent 
truss structure, which is made up of only tensile and 
compressive forces. 
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Figure 4  Irregular truss unit that is ideally stationed depending on 

the principal stresses 
 

2.4  Discretized rectangular unit 
The unit used to replace the solid element is assumed 

to be a rectangular shape that can express the normal and 
shear stresses symmetrically and simultaneously.  The 
rectangular shape of a truss unit, which behaves as an 
infinitesimal element of a continuum structure, was 
studied[10].  The interactive relationship was derived 
based on the assumption that the amount of energy 
changed by the normal stresses in an infinitesimal 
element is identical to the amount of energy changed by 
the vertical and horizontal members of the truss unit.  
Additionally, the amount of energy changed by the shear 
stress of the element is identical to the amount of energy 
changed by the diagonal members of the truss unit.  
However, this study showed inconsistencies between the 
original shape of the truss unit and the shapes formed by 
overlapping areas of truss units, as shown in Figure 5. 

 
Figure 5  Dissimilarity of neighboring shapes 

 

3  Mathematical model 

3.1  Definition of regular truss unit 
The enhanced equivalent regular truss unit was 

redefined, as shown in Figure 6, such that the shape 
formed by the neighboring areas of the truss unit 
maintained an identical shape with the truss unit in all of 
the relevant areas.  It is assumed that the normal stresses 
and shear stress are related to the horizontal and vertical 
truss members, and the diagonal truss members, 
respectively.  εd1 and εd2 indicate the diagonal strains of 
each infinitesimal element when both normal and shear 
stresses are applied to the element.  Details of the 
sectional areas and strains are shown in Figure 7. 

 
Figure 6  Enhanced regular truss unit and its similarity with 

neighboring shapes 

 
Figure 7  Comparison of (a) existing and (b) enhanced truss units 

under normal and shear strains 
 

3.2  Restricted conditions 
The principle of the conservation of energy, which 

states that the internal energy of the infinitesimal element 
is equal to the sum of the energies of each member of the 
regular truss unit, was adopted to determine the 
compatibility conditions.  The formulated processes of 
this methodology are described below.  The internal 
energy of the infinitesimal element under 
two-dimensional plane stress can be expressed in terms of 
the strains as: 

2
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where, U is the internal energy, J; E is Young’s modulus, 
Pa; ν is Poisson’s ratio; G is the shear modulus, Pa; γxy is 
the shear strain;   is the length of one side of the solid 
element, m; t is the thickness of the solid element, m. 

The internal energies of the horizontal, vertical, and 
diagonal members of the equivalent truss unit can be 
presented in terms of the strain as: 
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where, Ao is the cross-sectional area of the horizontal and  
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vertical members, m2; Ad is the diagonal area of the 
diagonal members, m2; σx and σy are the normal stresses 
in the x and y directions, Pa; UTSEH, UTSEV, and UTSED are 
the internal energies of the horizontal, vertical, and 
diagonal members of the truss structure unit, respectively, 
J. 

Here, each strain (εL1 and εL2) that occurred in a 
diagonal direction (caused by the normal and shear 
stresses) is schematized, as shown in Figure 8.  Each 
strain (εd1 and εd2) in a diagonal direction, as shown in 
Figure 7, can be presented as: 

1 1 2d L L         (5) 

2 1 2d L L         (6) 

 
a. Normal strain                     b. Shear strain 

Figure 8  Deformation of an enhanced regular truss unit 
 

In Equations (5) and (6), the strains εL1 and εL2 can be 
derived from the geometric conditions shown in Figure 8.  
First, εL1 is defined as: 
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Because both εx and εy are extremely small values, 
Equation (8) can be written as:  
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Therefore, Equation (7) can be rearranged as: 
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From the geometric conditions in Figure 8, εL2 can be 
defined as: 
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where, Lbd is the diagonal length after deformation, m. 
Using the trigonometric equation, Lbd can be 

rearranged as: 

2 2 2 2 π2 cos
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       (11) 

Equation (12) can be derived from Equations (10) and 
(11) as: 

2 2
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Finally, Equations (13) and (14) can be obtained by 
substituting Equations (9) and (12) into Equations (5) and 
(6), respectively. 
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Using the principle of the conservation of energy, 
which states that internal energy subjected to the 
infinitesimal element is always equal to the sum of the 
internal energies of all truss members (i.e., the horizontal, 
vertical, and diagonal members, as described above) of 
the equivalent truss structure unit, the following restricted 
conditions were induced: 

1
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3.3  Modeling 
The method of modeling for the case, where members 

of the equivalent truss structure overlap, is shown in 
Figure 9.  When the truss elements are joined together, 
the cross-sectional areas of the elements are doubled.  
However, the cross-sectional areas of the outermost 
elements are not doubled since they do not overlap with 
other elements.  Because the equivalent truss structure 
behaves in the same way as the continuum structure, the 
equivalent nodal loads (which are the point loads 
transformed from the continuous loads acting on the 
boundaries) should be applied to the equivalent truss 
structure.  Therefore, the external loads are converted in 
accordance with the three-point Gaussian integration rule; 
the equivalent truss structure unit has three nodes on one 
side, as shown in Figure 10, which depicts the uniform 
load case. 
3.4  Stress and strain 

In the equivalent truss unit, the force in the direction 
of the x-axis is taken by the horizontal and diagonal 
members, the force in the direction of the y-axis is taken 
by the vertical and diagonal members, and the shear force 
is taken only by the diagonal members, as shown in 



156   October, 2015               Int J Agric & Biol Eng      Open Access at http://www.ijabe.org               Vol. 8 No.5 

Figure 11.  

 
Figure 9  Modeling of enhanced regular truss unit in an 

overlapped area 

 
Note: q is the uniform distributed load, N/m; l is the length of one side of the unit 
element, m. 

Figure 10  Equivalent nodal loads by three-point Gaussian 
integration rule 

 
Note: A.F①-⑤, A.F⑥-⑩ and A.Fⓐ-ⓓ are related with the 

normal stresses in the x and y directions, respectively, and the 
normal and shear stresses. 

Figure 11  Truss elements related with external forces 
 

When shear forces occur, members ⓐ and ⓑ affect 

the shear force in the positive direction, whereas 

members ⓒ and ⓓ affect the shear force in the negative 

direction.  Therefore, members ⓐ and ⓑ are marked 

with positive signs, whereas members ⓒ and ⓓ are 

marked with negative signs.  The summations of the 
forces applied to the equivalent truss unit are derived as: 
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To calculate the forces in the outermost members, the  

one half constant values in Equations (16)-(18) should be 
eliminated because these members do not have 
neighboring members to share the forces.  The 
corresponding stresses can be obtained by using the 
forces and sectional areas, and the strains can be 
computed from the relationship between the stress and 
strain.  Because the model developed in this study is an 
approximate analysis model, it was found that more 
accurate shear strains can be provided from the axial 
forces as opposed to from the stress-strain relationship 
that is shown in Equation (19).  However, any of these 
methods can be used because they all provide solutions 
that are within the reasonable range of accuracy (with the 
exception of the unconcerned area).  

 

21 ddxy                              
(19) 

4  Results and discussion 

4.1  Deflection 
Vertical deflections, which occurred at the bottom 

center of simply supported beams under a concentrated 
load, were examined.  The beams included the following 
details: a width of 0.2 m, depth of 0.5 m, elastic modulus 
of 199.81 GPa, concentrated load of 980 kN, and spans 
varying from 2.0 m to 4.5 m.  To check the degrees of 
accuracy, the results of the vertical deflections were 
compared with the solutions from the finite element 
method (FEM) that was based on three-dimensional solid 
elements.  The number of square grids in the height 
direction was fixed at 20 for both methods and the 
number of square grids in the span direction was varied in 
accordance with the ratio of the span length to the span 
height.  The results in Table 1 show that the relative 
error between the equivalent truss structure model and the 
three-dimensional FEM was 3.28%, even when the ratio 
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of the length to the height was four.  As the ratio was 
increased, it was observed that the relative error was 
reduced. 

 

Table 1  Deflection of a simply supported beam under a  
concentrated load            Unit: mm 

Length/height RTSM⁺ FEM⁺⁺ Error⁺⁺⁺/% 

4 5.44057 5.26228 3.28 
5 9.39066 9.14877 2.58 
6 15.20773 14.87448 2.19 
7 23.26511 22.84726 1.80 
8 33.93622 33.31500 1.83 
9 47.59453 46.76543 1.74 

Note: ⁺: Regular truss structure model (RTSM) used in this study; ⁺⁺: FEM 

using 3D solid elements; ⁺⁺⁺: Relative error. 
 

A previous truss structure model[10] was compared 
with the truss structure model developed in this study; 
comparisons were made in terms of the vertical 
deflections at the bottom center of the beam (with a span 
of 2.5 m) as the number of members was increased.  The 
state of plane stress can be assumed for the continuum 
analysis, i.e., the stress perpendicular to the mid-plane is 
zero.  A simply supported beam loaded in a 
two-dimensional plane can be used as a representative 
example because the stress related to the beam width is 
negligible.  However, because deformation in the 
direction of the beam’s width is not constrained, problems 
using three-dimensional solid structure analysis without 
constraints in the direction of the beam’s width can also 
be solved.  Therefore, the results of the truss structure 
model were also compared with those solved using the 
FEM based on three-dimensional solid elements.  The 
truss structure model proposed in this study assumed that 
its basic unit behaves equivalently to infinitesimal solid 
elements in the state of plane stress.  The deflection 
curve of the equivalent truss structure model was closer 
to the solid structure model without any constraint in the 
direction of the z-axis than it was with the structure model 
that had constraints, as shown in Figure 12.   

As the number of elements increased, the deflection 
curve obtained by the previous truss structure model[10] 
became less similar to the exact solution, whereas the 
results of the enhanced truss structure model became 
more similar to the exact solution.  Although the 
analysis was done with a small number of truss elements, 
the enhanced equivalent truss structure model provided a 
fast convergence rate. 

 
Figure 12  Deflections of the regular truss units as a function of 

the number of truss elements 

4.2  Stress and strain 
The stresses and strains of a simply supported beam 

under a uniform load were reviewed at the center of the 
beam.  The details of the beam are: a width of 0.02 m, 
depth of 0.5 m, elasticity modulus of 199.81 GPa, 
uniform load of 9.8 MN/m, and span of 2.5 m.  The 
meshing contained 20 grids for the height and 100 grids 
for the length.  To determine the degree of accuracy, the 
results of the stresses and strains were compared with 
those determined by the FEM based on three-dimensional 
solid elements without constraints in the direction of the 
beam’s width.  It was found that the degrees of accuracy 
of the solutions were less than 5% of the relative error in 
most locations, as shown in Tables 2 and 3. 

 

Table 2  Sectional stresses of a simply supported beam under 
a distributed load 

Y σx
 

σy
 

τxy
 

Coordinate from 
bottom/mm 

Stress/ 
GPa Error/% Stress/ 

GPa Error/% Stress/ 
GPa Error/% 

12.5 8.42736 −4.21 −0.00159 76.56 0.00172 −3.73 
37.5 7.91887 1.08 −0.00818 4.17 0.00498 −2.18 
62.5 6.98414 1.47 −0.02116 0.53 0.00797 −0.81 
87.5 6.03219 1.50 −0.03976 −0.01 0.01058 −0.20 
112.5 5.08812 1.51 −0.06321 −0.07 0.01282 0.10 
137.5 4.15214 1.52 −0.09076 −0.02 0.01469 0.27 
162.5 3.22287 1.53 −0.12167 0.04 0.01618 0.37 
187.5 2.29881 1.55 −0.15518 0.10 0.01729 0.40 
212.5 1.37846 1.60 −0.19054 0.14 0.01803 0.40 
237.5 0.46033 1.84 −0.22701 0.16 0.01839 0.37 
262.5 −0.45707 1.12 −0.26382 0.18 0.01838 0.32 
287.5 −1.37525 1.36 −0.30025 0.18 0.01800 0.25 
312.5 −2.29569 1.41 −0.33554 0.17 0.01725 0.15 
337.5 −3.21988 1.43 −0.36895 0.16 0.01612 0.02 
362.5 −4.14930 1.45 −0.39974 0.13 0.01463 −0.16 
387.5 −5.08543 1.45 −0.42716 0.10 0.01276 −0.40 
412.5 −6.02964 1.46 −0.45049 0.06 0.01052 −0.79 
437.5 −6.98179 1.43 −0.46897 0.01 0.00792 −1.44 
462.5 −7.91814 1.07 −0.48187 −0.06 0.00495 −2.83 
487.5 −8.45111 −3.94 −0.48841 −0.14 0.00171 −4.38 



158   October, 2015               Int J Agric & Biol Eng      Open Access at http://www.ijabe.org               Vol. 8 No.5 

Table 3  Sectional strains of a simply supported beam under a 
distributed load 

Y εx
 

εy
 

γxy
 

Coordinate from 
bottom/mm Strain Error/% Strain Error/% Strain Error/% 

12.5 0.04217 −4.21 −0.01266 −4.18 0.00002 −1.26 

37.5 0.03964 1.08 −0.01193 1.09 0.00006 0.33 

62.5 0.03498 1.47 −0.01059 1.46 0.00010 1.73 

87.5 0.03024 1.50 −0.00925 1.47 0.00014 2.35 

112.5 0.02555 1.50 −0.00795 1.44 0.00017 2.67 

137.5 0.02091 1.51 −0.00668 1.41 0.00019 2.85 

162.5 0.01631 1.51 −0.00544 1.36 0.00021 2.94 

187.5 0.01173 1.52 −0.00422 1.28 0.00023 2.98 

212.5 0.00718 1.54 −0.00302 1.13 0.00024 2.98 

237.5 0.00264 1.62 −0.00182 0.79 0.00024 2.95 

262.5 −0.00189 1.32 −0.00063 −0.82 0.00024 2.90 

287.5 −0.00643 1.45 0.00056 4.66 0.00024 2.82 

312.5 −0.01098 1.47 0.00176 2.62 0.00023 2.72 

337.5 −0.01556 1.48 0.00298 2.24 0.00021 2.58 

362.5 −0.02016 1.49 0.00422 2.08 0.00019 2.40 

387.5 −0.02480 1.49 0.00549 1.99 0.00017 2.15 

412.5 −0.02950 1.49 0.00679 1.93 0.00014 1.76 

437.5 −0.03423 1.46 0.00813 1.85 0.00010 1.09 

462.5 −0.03890 1.09 0.00947 1.36 0.00006 −0.34 

487.5 −0.04156 −4.00 0.01024 −4.80 0.00002 −1.93 
 

When the computed stress and strain values were 
relatively low, the relative errors were high and the values 
were not sufficient to obtain a solution.  However, the 
low values in the structural analysis are not a design 
concern; therefore, we believe that the equivalent truss 
structure model provides a sufficient number of solutions 
for practical purposes. 
4.3  Volumetric ratio 

The consistency of the volumetric ratio of the 
previous truss structure model[10] was compared with the 
equivalent truss structure model that is proposed in this 
study.  The changes in the volumetric ratios, as a factor 
of the number of truss members, were observed for the 
simply supported beam under a concentrated load.  Both 
models maintained a volumetric ratio of 3 to 1 in each 
unit.  However, this situation changed when the units 
were combined into a structure.  The volumetric ratio of 
the previous truss structure model approached 3 to 1 as 
the total number of truss members increased, whereas the 
volumetric ratio of the equivalent truss structure model 
was constant at 3 to 1, as shown in Figure 13.  This 
indicates that the equivalent truss structure model is more 
consistent for structural analysis. 

 
Figure 13  Volume ratios of the regular truss units as a function of 

the number of truss elements 

4.4  von Misses stress 
To check the von Misses stress, a deep beam (shown 

in Figure 14a) was used.  This beam had a width of  
0.01 m, depth of 0.25 m, span of 0.5 m, elasticity 
modulus of 200 GPa, and sine type load distribution of 
P0=3 MPa and a=0.5 m.  The number of grids for the 
domain was set to 25 and 50 in the vertical and horizontal 
directions, respectively.  For comparison with the results 
of the equivalent truss structure model, three-dimensional 
solid structural analysis was done using SAP2000TM 
(Computers and Structures, Inc., Berkeley, California, 
USA) based on solid elements.  The number of grids 
was set to 100 and 200 in the vertical and horizontal 
directions, respectively.  Stress concentrations occurred 
at both the supports, as explained by Saint-Venant’s 
principle, but the magnitudes of the stresses at the 
supports showed different values between the two models.  
However, because these types of stress concentrations are 
dealt with only in special issues (e.g., in structural design), 
only significant stresses less than 11 MPa were included 
(in the form of contour lines).  These were made using 
the Kriging technique (a geo-statistical interpolation 
method), as shown in Figure 15a.  The stress 
distributions of the two models over the whole domain, 
with the exception of the supports, were similar enough 
for the analysis solutions of the truss structure model to 
be deemed acceptable. 

The other example that we analyzed was an aqueduct 
(a hydraulic structure), which is a structure that is 
frequently used in agricultural civil engineering.  The 
shape and dimensions of the structure are shown in 
Figure 15b, and the following assumptions were made: a 
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hydraulic pressure of 9.8 kN/m3, soil pressure of     
19.6 kN/m3, elasticity modulus of 200 GPa, and thickness 
of 0.02 m.  It was also assumed that the hydraulic and 
earth pressures were applied simultaneously to maintain a 
maximum loading state.  The size of the unit grid was 
set to 0.005 m for both the truss structure and the solid 
structure analysis.  Stress concentrations occurred at 
both the supports and the haunches, as shown in Figure 
15b.  In the case of a simply supported beam under a 
sine load, only significant stresses less than 196 GPa were 
plotted.  For both of the examples, the equivalent truss 

structure model provides acceptable results that satisfy 
the requirements for structural analysis. 

 

 
Figure 14  (a) Simply supported beam and (b) agricultural 

aqueduct under various loads 
 

 
a. Solid structure model                                          b. Truss structure model 

 

Figure 15  von Misses stress distributions of a simply supported beam and an agricultural aqueduct 
 

4.5  Reinforcement arrangement 
A reinforced concrete (RC) structure is composed of a 

composite material, in which reinforcing bars resist 
tensile stresses and concrete resists compressive stresses.  
In other words, the solid structure can be divided into two 
regions: compressive (strut) and tensile (tie) areas, which 
can be replaced by the compressive and tensile elements 
of the equivalent truss structure model.  If all of the truss 
elements are under compressive and near-zero forces are 
eliminated, the main tensile stress paths can be easily 

found by analyzing the remaining elements.  For 
example, the truss elements with only tensile stresses in 
the agricultural aqueduct are colored yellow (Figure 16a).  
The principal stress paths of tensile stresses can be 
determined by following the truss elements with high 
tensile stresses; reinforced bars can be placed along these 
pathways.  However, because these reinforcing bars 
should be connected to each other while also maintaining 
a minimum depth from the surface of the concrete, their 
placement should be practically decided, as shown in 
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Figure 16b.  These results are exactly the same as the 
standard drawings of steel reinforcement based on the 
criteria of the Korea Rural Community Corporation 
(KRC) in South Korea.  In the construction 
specifications of the KRC, the top and diagonal bars in 

the slabs of agricultural aqueducts are referred to as 
assembling bars.  However, the truss structure model 
shows that the bars also play important roles as 
components that resist the main stresses.  

 
a. Main paths (red color) of tensile stresses b. Practical placement of reinforced bars c. Standard drawing of the steel reinforcement 

 

Figure 16  Truss elements (yellow color) with only tensile stresses in the agricultural aqueduct are shown 
 

Details concerning the reinforcement of a simply 
supported beam are shown in Figure 17.  The purpose of 
the longitudinal and bent-up bars located at the bottom is 
to resist tension that occurs in the bottom of the beam.  
The top bars are required for the assembly of the 
remaining reinforcement bars.  The bent-up bars are 
used to resist diagonal tension caused by the combination 
of tension and shear stresses near the ends of the span. 

 
Figure 17  Typical arrangement details of the reinforcement bars 

in a simply supported beam 
 

The arrangement of the reinforced bars that is 
required in a simply supported beam with a point load at 
the center of beam was also obtained by the same method 
mentioned above (Figure 18b).  Without considering 
shear stresses, the equivalent truss structure model can 
intuitionally suggest the appropriate arrangements of the 
reinforcement bars. 

 
a. Main paths (red color) of tensile stresses  

 
b. Practical placement of the reinforced bars 

Figure 18  Truss elements (yellow color) with only tensile stresses 
in a simply supported beam are shown 

5  Conclusions 

In order to have identical behavior with a continuum 
structure for a regular truss structure model, a 
two-dimensional linear elastic state was developed based 
on the law of the conservation of energy.  The advanced 
model agreed well with the structural analysis that was 
based on the three-dimensional finite element method.  
Additionally, our proposed model was practically useful 
for problems concerning specific areas (e.g., the 
arrangements of reinforcement bars), which are related to 
the main pathways of stresses as opposed to all of the 
areas, due to its accuracy.  In the future, we expect that 
the equivalent truss structure model, which possesses 
definite advantages in simulating crack propagation by 
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using simple criteria to check for tensile or compressive 
failure, will dramatically decrease the computing times 
required for the reliability analysis of complex structures 
in areas related to agricultural engineering. 
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