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Abstract: The objective of this study was to explore the potential of near infrared hyperspectral imaging combined with 

statistical regression models and neural networks for nondestructive prediction of protein content of wheat kernels.  

Seventy-nine samples from 11 breeds of wheat kernels were collected.  The protein percentage of each sample measured by 

semimicro-Kjeldahl method was taken as the reference value. After comparing the prediction models of principal components 

regression (PCR) and partial least squares regression (PLSR) with various pretreatment methods, PLSR preprocessed by zero 

mean normalization (z score) function of MATLAB was found to obtain better prediction results than other regression models.  

Based on 10 latent variables of PLSR, the radial basis function (RBF) neural network was applied to improve the prediction, in 

which the coefficients of determination (R2) were greater than 0.92 for both the calibration set and validation set, while the 

corresponding RMSE values were 0.3496 and 0.4005, respectively.  Therefore, hyperspectral imaging can provide a fast and 

non-destructive method for predicting the wheat kernels’ protein content. 
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1  Introduction 

As a cereal crop with high protein, wheat is one of the 

main sources of protein for human food and livestock feed, 

whose protein content accounts for 10%-18% of total 

kernel’s weight.  The quantity and quality of protein 

largely determine the nutrition value and the taste of the 

wheat products, such as noodles, bread, pasta, and so on. 

That is to say, protein is an important indicator of the 

wheaten food. 
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Several chemical and physical methods have been 

established and applied for detecting the protein content, 

such as Kjeldahl method
[1]

, Dumas (Nitrogen Combustion) 

method
[1,2]

, Biuret method
[3]

, Lowry method
[4]

, and 

Dye-Binding methods
[5]

.  Nevertheless, these methods 

are weak at timeliness with high cost and invasive to the 

food materials in most cases.  With the development of 

image technology and machine vision, infrared 

spectroscopy, especially near infrared (NIR) reflection, 

could achieve rapid and non-invasive detection without 

chemical consumption and environment contamination, so 

many researchers tried to use this kind of chemical-free 

method to assess the attributes of food.  Bogomolov et 

al.
[6]

 used light scatter of visible and adjacent near infrared 

region to measure the fat and total protein in milk.  Kays 

et al.
[7]

 investigated the potential of near infrared 

spectroscopy for the analysis of protein in a data set that 

included food products with different kinds of cereals.  

Pohl et al.
[8]

 used the principal component analysis (PCA) 
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and the partial least squares regression (PLSR) to evaluate 

the cereal grains in bioethanol production after scanned by 

NIR system.  Norgaard et al.
[9]

 took more than 40 000 

wheat samples and designed an artificial neural network 

(ANN) to model the relationship between the protein and 

NIR value.  However, a traditional infrared camera only 

covers a small region of the research object, which could 

generate inaccurate detecting results when some features 

are uneven inside the material. 

As a prominent technology of analyzing biological and 

food samples, hyperspectral imaging has attracted more 

and more attention in recent years.  Hyperspectral images 

contain two spatial dimensions and one spectral dimension 

with contiguous bands.  Therefore, a hyperspectral image 

can be taken as a data cube I(x, y, λ), in which I(x, y) is the 

spatial position of a pixel, and I(λ) stands for the 

wavelength.  Unlike the previous spectroscopy, the 

information of each pixel in the hyperspectral image could 

cover a complete spectrum throughout the visible, 

near-infrared and/or short wave region.  Because NIR has 

strong ability of penetration, the hyperspectral image 

could fully reflect a sample’s external morphology 

characteristics and the internal distribution of diverse 

chemical compositions
[10-12]

.  Hyperspectral imaging 

(HSI) technology with combination of some pattern 

recognition and machine learning methods is accepted as 

the most reliable and nondestructive analytical tool in 

detection of contaminations, identification of defects and 

quantification of constituents for guaranteeing food 

quality and safety.  For example, according to Barbin et 

al.
[13]

 and Bhuvaneswari et al.
[14]

, NIR reflection in HSI 

could determine the chemical composition in pork or 

detect insect fragments in semolina.  Serranti et al.
[15]

 

obtained the hyperspectral images of the oat and groat 

kernels in the NIR range (1006-1650 nm), and used only 

three wavelengths (1132 nm, 1195 nm and 1608 nm) to 

classify those kernels.  Similarly, Choudhary et al.
[16]

 

combined PCA on wavelet texture and infrared HSI to sort 

eight Western Canadian wheat classes in bulk samples. 

The objective of this study was to investigate the 

feasibility of NIR hyperspectral imaging combined with 

the regression models of principal component regression 

(PCR) and PLSR and neural networks of the radial basis 

function (RBF) to predict protein content of wheat  

kernels.  

2  Materials and methods 

Figure 1 shows the main procedures of prediction of 

wheat’s protein based on hyperspectral images in this study, 

which will be explained in the following sections in detail. 

 

Figure 1  Flow chart of prediction of wheat kernels’ protein content by hyperspectral images 
 

2.1  Wheat kernels samples 

Seventy-nine samples in this study were randomly 

collected from 11 breeds of wheat samples, including Abo 

(8), Gao9411 (7), Han6172 (7), N9659 (6), Wan33 (8), 

Wenmai6 (8), Xiaoyan No.6 (8), Xinong1376 (6), 

Zhengnong16 (7), Zhongyu6 (8), and Zhou13 (6).  Wheat 

kernels of these samples were grown in the wheat field of 

Northwest A&F University under the same cultivated 

conditions and harvested in June 2013.  They were all 

kept in the environment with the normal temperature after 
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they dried sufficiently.  Each sample contained 20 g of a 

single breed of wheat kernels.  For each wheat breed, 4-6 

samples were randomly selected to compose the 

calibration set, and the rest of the samples were used as the 

testing set for assessment of their protein contents. 

2.2  NIR hyperspectral imaging system 

NIR hyperspectral image acquiring system consists of 

a hyperspectral spectrograph (ImSpector N17E, Spectral 

Imaging Ltd., Finland), a CCD camera (XEVA2616, 

XenICs Ltd., Belgium), a dark box with a motorized 

translation stage and a lighting unit of four 100 W halogen 

lights.  The spectrograph’s spectral range is from 900 nm 

to 1700 nm, and the resolution is 2.8 nm.  The CCD 

camera has 320×256 pixels.  After adjusted by black and 

white correction, the HSI data can be acquired by this 

pushbroom system in line scanning mode. 

2.3  Image acquisition 

To avoid the baseline shift, the HSI system was turned 

on and preheated for 30 min.  The hyperspectral images 

were acquired with the help of Spectral SECN-V17E 

software (Gilden Photonics Ltd., England) with the 

wavelength resolution of 3.32 nm, the exposure time of  

10 ms and the stage speed of 20 mm/s.  Hyperspectral 

image extraction was performed by the ENVI 4.7 

(Research Systems Inc., Boulder, Co, USA). 

Owing to the uneven distribution of illuminant and 

dark current of the camera, the hyperspectral image will 

have greater noise in the bands with weak light intensity.  

So the raw image, I, needs to be calibrated prior to image 

processing.  Under the same condition with raw image 

acquisition, the white reference image, W, was captured 

with a white Teflon calibration tile, while the black 

reference image, B, was acquired after turning off the 

lighting source and closing camera’s lens cap.  Then, the 

raw images were transformed to the relative image, R, 

using Equation (1). 

R = (I − B)/(W − B)              (1) 

2.4  Spectra preprocessing 

To explore the relationship between hyperspectral 

image of wheat kernels and protein content, spectra of ROI 

(region of interest) should be extracted from background.  

Besides, raw curves of the NIR spectrum still have some 

noise especially in lower wavelengths and higher 

wavelengths.  This unreliable information will disturb the 

subsequent analysis and need to be discarded in the image 

preprocessing.  All image processing was completed 

using MATLAB (R2013b; Math Works, Inc., USA). 

The hyperspectral image of one sample at 950 nm in 

Figure 2a, was taken as an example, in which the wheat 

kernels region is the ROI.  Figure 2b shows the spectral 

profiles of one pixel of the wheat kernels and one pixel of 

the background with 256 bands (865-1711 nm) of this 

sample.  It can be seen that there exists obvious 

difference between the reflection curve of wheat kernel 

and that of background.  Therefore, the process of band 

ratio between 1084 nm and 1449 nm combined with 

morphological open and close operations were used to 

define a mask to remove the background in the image (see 

Figure 2).  Then, the average spectrum of ROI in each 

sample was calculated.  

In view of high noise in both ends of the NIR spectral 

region, the wavelength range was limited to 231 bands in 

the middle (928-1695 nm) by band clip.  The spectral 

data of all samples could be extracted in the same way.  

The average spectra curves of 79 samples after band clip 

are shown in Figure 2d).  These curves contain the main 

key spectral information of ROI. 

2.5  Wheat protein measurement with chemical method 

After acquiring the raw hyperspectral images of the 

wheat kernels, the semimicro-Kjeldahl method
[17]

 was 

used to get the protein contents of 79 samples as the 

reference value.  In this method, the crude protein 

nutrition is determined by measuring the total organic 

nitrogen.  For protein decomposition, the sample of 

wheat kernels is powdered and heated to digest with 

sulfuric acid and catalyst.  The decomposition of 

ammonia and sulfuric acid combined into ammonium 

sulfate.  Then the ammonia dissociated by alkalifying and 

distilling was absorbed by boric acid.  The boric anions 

formed are titrated with standardized acid.  Finally, the 

protein content is calculated by the product of the 

consumption of acid and the conversion factor (see 

Equation (2))
[17,18]

. 

2 4

1 2Pro% 2 14 100H SO

V V
N F

W


           (2) 

where, Pro% is the percentage of protein; the number 2  

http://www.sciencedirect.com/science/article/pii/S0003267010014571#eq0005
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stands for that one sulfuric acid react with two amino; 

NH2SO4
 is normality of H2SO4, mol/L; V1 is the volume of 

standard acid for wheat sample, mL; V2 is the volume of 

standard acid for blank, mL; V1−V2 is the corrected acid 

volume; W is the weight of sample, in g; 14 is atomic 

weight of one mole nitrogen, in g; F=5.70, a factor for 

wheat of conversing the percentage of nitrogen to the 

percentage of crude protein. 
 

         

a. Hyperspectral image at 950 nm  b. Spectral profile of full bands 

 

          
c. ROI extraction  d. Average spectra of all samples after band clip 

 

Figure 2  Extracting the spectral data of the region of interest (ROI) 

 

2.6  Spectral data pretreatment 

For modeling and verifying, 4-6 samples were 

randomly chosen for each wheat breed to form calibration 

samples, while the rest 22 samples were used for 

prediction.  To reduce the influence of high-frequency 

random noises, the nonuniformity and the surface 

scattering of the wheat kernels, the spectral data were 

subjected to five commonly used chemometrics 

pre-treatments respectively: 0 to 1 normalization (01 

normalization), multiplicative scatter correction (MSC), 

Savitzky-Golay (SG) smoothing, zero mean normalization 

(z score) and first derivative (1-Der).  For these five 

pre-treatment methods, 01 normalization could unify the 

statistical distribution of samples; MSC reduces the 

influence the feature of surface scatter and the variance of 

optical length on spectrum; SG smoothing could maintain 

the spectrum’s profile by removing the temporal energy 

surge of noises; z score scales data set using the mean 

value and the standard deviation; and 1-Der is often used 

for removing the disturbance caused by background. 

2.7  Building prediction models 

One of the challenges in analyzing hyperspectral data 

is to solve the problem of multicollinearity in HSI data, i.e. 

redundancy.  Redundant information in hyperspectral image 

will slow down the processing speed and accuracy.  After 

band clipping, principal components regression (PCR) and 

partial least square regression (PLSR) were employed to 

reduce the redundancy and speed up the data analysis and 

processing.  These two regression models could extract 

main spectrum information from voluminous data.  
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For PCR, the spectrum matrix needed to be centralized 

at first.  Then, through estimating eigenvalue 

decomposition of the covariance matrix, those 

eigenvectors with large eigenvalues, so called principal 

components, were used to form the projection matrix.  At 

last, the original spectrum matrix was projected to get a 

new sample matrix with low dimension.  We decided the 

number of principal components in PCR by the percentage 

variance explained in spectral reflection. 

For PLSR, the matrix of pretreated spectra data and the 

protein percentage vector measured by chemical method 

were specified as independent (X) and dependent (Y) 

respectively.  X and Y were analyzed by principal 

component decomposition with non-linear iterative partial 

least squares (NIPALS).  This decomposition process 

took the linear relationship between X and Y into account.  

After switching X and Y as iteration variable repeatedly, X 

was transferred into the matrix of latent variables.  The 

number of best latent variables in PLSR was determined 

by 10-fold cross validation (CV).  The smaller the 

components (principal components or latent variables) 

number, the lower the dimension of model was. 

Based on the reduced data by PCR or PLSR, radial 

basis function (RBF) neural network will be applied to 

improve the forecasting. RBF network is a three-layer 

feedback network model, which includes input layer, 

hidden layer and output layer.  The hidden layer uses 

RBF as the base of hidden unit.  We took radial Gaussian 

function (Equation (3)) as activation function for hidden 

layer in this research.  Equation (4) gives the output of the 

network.  The input data of RBF network can be 

transformed from low dimensional space to high 

dimensional space so as to change each linearly 

inseparable problem into a separable one.  

2

2

1
( ) exp || ||

2
p i p iR x c x c



 
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       

   (3) 

1

( )
h

j ij p i

i

o w R x c


  
             

(4) 

where, R(xp−ci) is the activation function; xp=(x 

p

1, x 

p

2,…, x 

p

m) 

is the p
th

 input sample; ci is the center of the Gaussian 

function, i=1,2,…,h, while h is the number of hidden 

nodes.  ||xp−ci||
2
 is their Euclidean distance; σ is the 

variance of the Gaussian function; oj is the actual output of 

the j
th

 output node; wij is the connection weight between 

the hidden layer and output layer, which is obtained by the 

least mean square algorithm. 

To measure the model’s performance and select the 

best model, several indicators in the calibration set and the 

validation set were adopted, such as the mean square error 

in 10-fold CV (RMSECV), coefficients of determination 

(R
2
, Equation (5)), the root mean square errors  (RMSE, 

see Equation (6)) and the relative percentage difference 

(RPD%, Equation (7)).  MSE in 10-fold CV, R
2
 and 

RMSE in the calibration set could evaluate the model’s 

robustness, while R
2
, RMSE and RPD% in validation set is 

for assessment of prediction. 
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where, fi is the predict protein content percentage of the i
th

 

sample by prediction model; yi is the reference protein 

content percentage of the i
th

 sample obtained by the 

chemical method; n is the number of samples; y
 

is the 

mean protein content percentage of the sample set. 

All the prediction models were developed with 

MATLAB R2013b.  

3  Results and discussion 

3.1  Partition of sample set 

Table 1 presents the descriptive statistics such as the 

range, mean, and standard deviation (STD) of samples’ 

protein content acquired by semimicro-Kjeldahl method. 

As shown in Figure 3, the range of protein content varies 

with wheat breed, and the protein content percentage of 

each breed is concentrated around its mean value with 

relatively small vibration, in which the tick labels of x axis 

stand for sample index, for example, 1-8 are Abo, 9-15 are 

Gao9411, 16-22 are Han 6172, etc. In the last three rows of 

Table 1, the statistics for the whole set, calibration set and 

validation set are listed. 
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Table 1  Simple statistics of protein content for different wheat 

breeds and partition sets 

Sample Number of samples Protein range/% Mean/% STD 

Abo 8 14.21-14.87 14.4438 0.2609 

Gao9411 7 12.48-12.76 12.6543 0.0938 

Han6172 7 11.88-12.84 12.4314 0.2907 

N9659 6 15.49-17.07 16.4200 0.6133 

Wan33 8 11.88-12.75 12.3025 0.3086 

Wenmai6 8 12.80-13.20 12.9763 0.1739 

Xiaoyan No.6 8 14.41-14.77 14.5975 0.1427 

Xinong1376 6 11.59-12.67 12.4233 0.4796 

Zhengnong16 7 12.93-15.06 13.9200 0.6871 

Zhongyu6 8 11.13-12.48 11.8588 0.3842 

Zhou13 6 13.01-14.31 13.4150 0.4648 

Whole Set 79 11.13-17.10 13.3673 1.3059 

Calibration Set 57 11.13-17.07 13.3456 1.2793 

Validation set 22 11.59-17.10 13.4236 1.4017 

 

Figure 3  Distribution of protein content 
 

3.2  Prediction methods 

The data model with accurate prediction was expected 

to have fewer latent variables, greater R
2
 and smaller 

RMSE and RPD%.  Furthermore, the difference of 

indicators’ value between the calibration set and the 

validation set should be as small as possible. 

3.2.1  PCR 

In the PCR model, the energy of the data concentrates 

on the first few principal components which usually reflect 

the data features with large correlation, while other 

components are about uncorrelated noise.  Because the 

more energy the principal component has, the greater 

percentage it accounts for the variance explained in the  

spectrum, the original spectrum can be reconstructed by a 

few principal components. 

For fitting the data, about twenty components can 

usually meet the need, but diagnostics from this fit can be 

used to make a choice of a simpler model with fewer 

components.  Figure 4 shows the cumulative percentage 

of variance of different pretreatment methods, in which 

each color zone corresponds to the explanation percentage 

of one principal component.  It can be seen that the 

proportion of the first two principal components in the 

spectrum is great than 90% under most circumstances.  

However, in view of the fact that too few components will 

lead to large error in data approximation, the components 

number of PCR was determined when their total 

percentage exceeds 99.99% in this study. 

 

Figure 4  Energy percentage varying with the number of principal 

components in different pretreatments 
 

Table 2 illustrates the results of PCR.  It can be seen 

that, 1-Der used the most principal components (20), but 

achieved the smallest R
2
 (0.5775 and 0.1050) and the 

largest RMSE (0.8316 and 1.4735) and RPD% (8.4711), 

which suggest that 1-Der in PCR model is not suitable for 

preprocessing the hyperspectral data of wheat kernels.  

For the other methods, MSC performed best whether in the 

calibration set or in the validation set with largest R
2
 

(0.8137 and 0.8122) and smallest RMSE (0.5522 and 

0.6075) and RPD% (3.2965) at the expense of more 

principal components (19). 

Table 2  Statistical indicators of different pretreatments in 

PCR 

Pretreatment  

method 

Principal 

components 

Calibration set Validation set 

R
2
 RMSE R

2
 RMSE RPD % 

01 Normalization 10 0.6351 0.7728 0.7701 0.6721 3.9269 

MSC 19 0.8137 0.5522 0.8122 0.6075 3.2965 

SG Smoothing 8 0.6026 0.8065 0.7687 0.6742 3.8864 

Z Score 10 0.6381 0.7696 0.7719 0.6695 3.9193 

1-Der 20 0.5775 0.8316 0.1050 1.4735 8.4711 
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3.2.2  PLSR 

As for the PLSR model, shown in Table 3, 1-Der 

method had the biggest R
2
 (0.8843) and smallest RMSE 

(0.4353) in the calibration set while the smallest R
2
 

(0.6885) and biggest RMSE (0.7823) in the validation set, 

which proved the 1-Der method magnified the noise and 

caused overfitting for the wheat spectrum.  Except for the 

1-Der, there were no large differences in the indicators 

among the other pretreatment methods between the 

calibration set and the validation set.  For the validation 

set, z score method corresponded to the greatest R
2
 

(0.8521) and the smallest RMSE (0.5391), which means it 

has stronger generalization ability. 

In general, PLSR performs better than PCR in 

prediction of wheat protein with fewer variables, higher R
2 

and less RMSE for both the calibration set and the 

validation set.  Owing to its good performance in 

prediction, the dimension reduction spectra of the 10 latent 

variables selected by z score for PLSR were combined 

with RBF neural network to achieve a better prediction 

result. 

 
 

Table 3  Statistical indicators of different pretreatments in PLSR 

Pretreatment Method Latent Variables RMSECV 

Calibration Set Validation set 

R
2
 RMSE R

2
 RMSE RPD % 

01 Normalization 9 0.6684 0.8390 0.5133 0.8413 0.5583 3.2678 

MSC 9 0.6724 0.8557 0.4860 0.8264 0.5840 3.1208 

SG Smoothing 11 0.7226 0.8561 0.4853 0.8401 0.5604 3.2636 

Z Score 10 0.7214 0.8559 0.4857 0.8521 0.5391 3.1276 

1-Der 10 1.1027 0.8843 0.4353 0.6885 0.7823 4.1331 

 

3.2.3  RBF neural network 

A RBF neural network was designed based on the 10 

latent variables obtained in PLSR with z score.  The mean 

squared error (MSE) goal and the spread speed of RBF are 

the only parameters needed to be fixed, which could be 

determined by cross validation.  Figure 5 is the prediction 

result under the circumstance that MSE’s goal and RBF’s 

spread speed are 0.12 and 0.6, respectively.  The axes of 

X and Y represent the protein percent measured by 

chemical method and the protein percent predicted with 

RBF.   

 

Figure 5  Prediction Result of RBF neural network 

Figure 5 indicated that most fitting points are close to 

the 45° line.  R
2
 in both the calibration set and the 

validation set were greater than 92%, and  RMSE (0.3496 

and 0.4005) went down to relatively small values, which 

proved that RBF network improved the prediction result 

apparently. 

4  Conclusions 

In this work, a pushbroom hyperspectral imaging 

system in the NIR region of 975-1522 nm was developed 

to evaluate the protein content percentage of wheat kernels 

from 11 breeds.  Compared with other pretreatment 

methods in PCR and PLSR, PLSR with the pretreatment 

with z score had relatively better dimension-reduced 

spectrum data, whose 10 latent variables could achieve the 

R
2
 of 0.8521, RMSE of 0.5391 and RPD% of 3.1276.  

Furthermore, based on these data, RBF neural networks 

were employed to improve the forecasting of protein 

content.  The results shows that RBF can fit both the 

calibration set and the validation set accurately with R
2 

greater than 0.92 and RMSE less than 0.41.  This study 

suggests that hyperspectral imaging is promising for 

evaluating protein content of wheat kernels. 



170   March, 2016              Int J Agric & Biol Eng      Open Access at http://www.ijabe.org                 Vol. 9 No.2 

 

Acknowledgements 

This study was funded by National Natural Science 

Foundation of China (31501228, 61473235, 41301450), 

Natural Science Foundation of Shaanxi Province 

(2015JM3110), Fundamental Research Funds for the 

Central Universities (Z109021561, QN2013062, 

2452015381), Scientific Research Foundation for Doctor, 

Northwest A&F University (2012BSJJ027), 

Comprehensive Innovation Technology Project of Shaanxi 

Province (2015KTZDNY01-06)  and Special Talent Fund 

of Shaanxi Province (Z111021303). 

 

[References] 

[1] Jung S, Rickert D A, Deak N A, Aldin E D, Recknor J, 

Johnson L A, Murphy P A.  Comparison of Kjeldahl and 

Dumas methods for determining protein contents of soybean 

products.  Journal of the American Oil Chemists' Society, 

2003; 80(12): 1169–1173. 

[2] Serrano S, Rincón F, García-Olmo J.  Cereal protein 

analysis via Dumas method: Standardization of a 

micro-method using the EuroVector Elemental Analyser.  

Journal of Cereal Science, 2013; 58(1): 31–36. 

[3] Itzhaki R F, Gill D M.  A micro-biuret method for 

estimating proteins.  Analytical Biochemistry, 1964; 9(4): 

401–410. 

[4] Markwell M A K, Haas S M, Bieber L L, Tolbert N.  A 

modification of the Lowry procedure to simplify protein 

determination in membrane and lipoprotein samples.  

Analytical Biochemistry, 1978; 87(1): 206–210. 

[5] Bradford M M.  A rapid and sensitive method for the 

quantitation of microgram quantities of protein utilizing the 

principle of protein-dye binding.  Analytical Biochemistry, 

1976; 72(1): 248–254. 

[6] Bogomolov A, Dietrich S, Boldrini B, Kessler R W.  

Quantitative determination of fat and total protein in milk 

based on visible light scatter.  Food Chemistry, 2012; 134(1): 

412–418. 

[7] Kays S E, Barton I I, Franklin E, Windham W R.  Predicting 

protein content by near infrared reflectance spectroscopy in 

diverse cereal food products.  Journal of Near Infrared 

Spectroscopy, 2000; 8(1): 35–43. 

[8] Pohl F, Senn T.  A rapid and sensitive method for the 

evaluation of cereal grains in bioethanol production using 

near infrared reflectance spectroscopy.  Bioresource 

Technology, 2011; 102(3): 2834–2841. 

[9] Norgaard L, Lagerholm M, Westerhaus M.  Artificial Neural 

Networks and Near Infrared Spectroscopy-A case study on 

protein content in whole wheat grain.  Foss White Paper. 

Available from: http://www.foss.dk/campaign/-/media/ 

242657904D734CE9B0652C3D885776AE.ashx. Accessed 

on [2014-12-30] 

[10] Sun D W.  Hyperspectral imaging for food quality analysis 

and control.  Elsevier, USA, 2010. 

[11] Huang H, Liu L, Ngadi M O.  Recent developments in 

hyperspectral imaging for assessment of food quality and 

safety.  Sensors, 2014; 14(4): 7248–7276. 

[12] Wu D, Sun D W.  Advanced applications of hyperspectral 

imaging technology for food quality and safety analysis and 

assessment: A review—Part I: Fundamentals.  Innovative 

Food Science & Emerging Technologies, 2013; 19: 1–14. 

[13] Barbin D F, ElMasry G, Sun D W, Allen P.  Non-destructive 

determination of chemical composition in intact and minced 

pork using near-infrared hyperspectral imaging.  Food 

Chemistry, 2013; 138(2): 1162–1171. 

[14] Bhuvaneswari K, Fields P G, White N D, Sarkar A K, Singh C 

B, Jayas D S.  Image analysis for detecting insect fragments 

in semolina.  Journal of Stored Products Research, 2011; 

47(1): 20–24. 

[15] Serranti S, Cesare D, Marini F, Bonifazi G.  Classification of 

oat and groat kernels using NIR hyperspectral imaging.  

Talanta, 2013; 103: 276–284. 

[16] Choudhary R, Mahesh S, Paliwal J, Jayas D S.  

Identification of wheat classes using wavelet features from 

near infrared hyperspectral images of bulk samples.  

Biosystems Engineering, 2009; 102(2): 115–127. 

[17] Fawcett J K.  The semi-micro Kjeldahl method for the 

determination of nitrogen.  The Journal of Medical 

Laboratory Technology, 1954; 12(1): 1–22. 

[18] Chang S K.  Protein analysis.  Food analysis. Springer, US, 

2010. Chapter 9, pp.133–146. 

 

 

 


