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Classification of the firmness of peaches by sensor fusion 
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Abstract: The objectives of this research were to compare the performance of each individual nondestructive sensor with the 
destructive sensor, and to apply sensor fusion technique to explore whether a combination of sensors would give better results 
than a single sensor for classification of peach firmness.  Tests were carried out with four peach varieties namely Royal Glory, 
Caterina, Tirrenia and Suidring.  In this research, the three nondestructive firmness sensors acoustic firmness, low-mass 
impact and micro-deformation impact were used to measure firmness.  A Bayesian classifier was chosen to provide a 
classification into three categories, namely soft, intermediate and hard.  High level fusion technique was performed by using 
identity declaration provided by each sensor.  The data fusion system processed the information of the sensors to output the 
fused data.  The result of the high level fusion was compared with the classification provided by an unsupervised algorithm 
based on destructive reference measurement.  The fusion process of the nondestructive sensors provided some improvements 
in the firmness classification; the error rate varied from 25% to 19% for individual sensor.  Furthermore, the results of fusion 
process by using three sensors decreased the error rate from 19% to 13%.  This research demonstrated that the fused systems 
provided more complete and complementary information and, thus, were more effective than individual sensors in the firmness 
classification of peaches. 
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1  Introduction1 

Firmness is an important textural parameter for the 
determination of harvest time, fruit maturity, and quality 
grade[1].  Peach quality is determined by several factors 
including ground color of the skin, sugar content, 
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firmness, aroma and taste.  However, peach quality is 
most closely related to firmness, as indicated by a 
Magness-Taylor firmness test. 2   Ground color of the 
peach skin is commonly accepted as the second indicator 
of maturity[2,3].  Destructive or nondestructive methods 
can be used to measure fruit firmness.  Traditionally 
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Magness-Taylor procedure which is defined as 
destructive measurement is a classical method and 
commonly used to measure the firmness of fruit flesh[4,5].  

At present, nondestructive or minimally destructive 
sensors that are potentially useful for rapid, 
non-destructive prediction of fruit firmness such as 
acoustic[6-11], micro-deformation[5,12-16], low-mass 
impact[17-22], ultrasonic[23-29], optical in the NIR or 
VIS-NIR range[30-37], and hyperspectral and multispectral 
scattering[38-43] have been used and compared to 
destructive measurements by many researchers. 

It still remains difficult to compare one sensor with 
another, or to determine the specific advantages of each 
sensor.  Since these sensors work with different 
principles and each of them has its merits and limitations 
in measuring specific quality parameters, the fusion of 
them would provide more detailed and potentially 
complementary information.  Sensor fusion is the 
process of integration of multiple data and knowledge 
representing the same real-world object into a consistent, 
accurate, and useful representation.  Sensor fusion is 
also known as (multi-sensor) data fusion and is a subset 
of information fusion. 

Theoretical developments in sensor fusion have 
influenced the studies on nondestructive firmness sensing, 
based on the fact that combinations of sensors should 
give a better results than each individual sensor alone[2].  
Furthermore, sensor fusion approach enables rapid and 
economical on-line implementation for fruit quality 
assessment[44].  As mentioned above, several studies 
examined and compared different excitations such as 
acoustic, micro-deformation, low-mass impact, optical 
spectroscopy, hyper spectral and multispectral scattering.  
In other studies some researchers concentrated on fusion 
method by combining two or more sensors to improve 
performance. 

Steinmetz et al.[45] used fusion method by combining 
a vision system and a near-infrared spectrophotometer for 
on-line, real-time, nondestructive sugar content prediction 
of “Golden Delicious” apples.  They used a multi-layer 
neural network fusion technique since a strong 
non-linearity in the relationship between color and sugar 
content was expected.  It was found in their study that 

the repeatability of the classification of fruits based on 
sugar content was improved when two sensors were 
combined.  The sensors and the fusion process were 
implemented on-line within a robotic device running at 
3-5 s per fruit.  Roussel et al.[46] used Bayesian fusion 
method by combining aroma, FT-IR and UV sensors for 
discrimination of white grape varieties.  They developed 
two methods based on Bayesian inference: the Bayesian 
minimum error fusion rule and the minimum risk rule.  
A significant improvement in the grape variety 
discrimination was provided by combining the outputs of 
each sensor individually.  Zakaria et al.[11] work on the 
classification of mango maturity and ripeness levels using 
fusion of the data of an electronic nose and an acoustic 
sensor.  Two data fusion techniques such as Linear 
Discriminant Analysis (LDA) and Principal Component 
Analysis (PCA) were used to discriminate the mangoes 
harvested at week 7 and week 8 based solely on the 
aroma and volatile gases released from the mangoes.  By 
applying low-level data fusion technique on the e-nose 
and acoustic data, the classification for maturity and 
ripeness levels using LDA was improved.  However, no 
significant improvement was observed using PCA with 
data fusion technique.  Mendoza et al.[1] evaluated four 
sensing systems (acoustic firmness, bio-yield firmness, 
visible and shortwave near infrared spectroscopy and 
spectral scattering) and combined for nondestructive 
prediction of the firmness and soluble solid content of 
Jonagold, Golden Delicious and Red Delicious apples.  
Better predictions of the firmness and, in most cases, of 
the soluble solid content were obtained using sensors 
fusion than using individual sensor.  This research 
demonstrated that the fused systems provided more 
complete and complementary information in prediction of 
apple quality.  Baltazar et al.[47] applied data fusion 
method to nondestructive testing data for classification of 
fresh intact tomatoes based on their ripening stages.  
Bayesian classifier considering a multivariate, three-class 
problem was incorporated for data fusion.  Numerical 
results showed that multi-sensorial data fusion 
considerably reduced the ripening classification error 
from 48% (single sensor) to 11% (multi-sensor).  Ignat 
et al.[48] studied the fusion of nondestructive sensor 
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outputs and a fusion of destructive reference parameters.  
Spectrometers in the VIS-NIR and SWIR spectral range, 
hyperspectral imaging in the visible range, relaxation and 
ultrasonic test, and color sensors were used for maturity 
prediction of intact bell peppers by sensor fusion.  
Linear and non-linear regression methods were applied 
for model establishment.  Multi-sensor models were 
found better than single sensor models based on the 
significantly lower root mean square errors of cross 
validation values for all tested cultivars and all reference 
parameters. 

Sensors used in our research measured the same 
property of the peach, i.e. firmness.  In order to compare 
and combine them, they were used on the same peaches 
and in the same experimental conditions.  A 
collaborative experiment was set up which enabled the 
comparison and the fusion of three firmness sensors.  
The objectives of the present work were: (1) to compare 
the performance of each individual nondestructive sensor 
to the destructive sensor; (2) to apply sensor fusion 
technique in order to determine peach firmness; (3) to 
compare the performance of the fusion process with each 
individual sensor. 

2  Materials and methods 

2.1  Plant materials 
Four peach varieties “Royal Glory” as red soft flesh 

and ripe, “Caterian” as yellow flesh and ripe, “Tirrenia” 
as yellow flesh and unripe and “Suidring” as red hard 
flesh and unripe, were used in the tests during 2011 
season for this study.  Four tested varieties were 
supplied from the market in Madrid and were kept in 
laboratory conditions of about 20°C during the test period.  
A total of 136 peach fruits (33 peaches for Royal Glory 
and Caterina, 43 peaches for Tirrenia and 27 peaches for 
Suidring) were considered and selected from the boxes 
for each variety.  Peach samples were selected from the 
boxes by eyes and touched to make a group with unripe, 
intermediate ripe and ripe peaches in the same group for 
each variety.  Peaches were tested in every day for 5 
days during storage in 20°C room conditions for getting a 
wide range of firmness stage depending on the variety 
properties.  Samples were tested nondestructively and 

destructively.  After destructive measurement, the 
number of samples in the group decreased as a result of 
destructive test nature.  For taking the measurements, 
two sides of peaches, considered to be divided by the 
suture of the fruit, were differentiated the most colored 
side (blush) an, and the least colored side (non-blush).  
Totally, six measurements for each peach were taken 
from three points within the longitudinal axis of the peach 
for two sides in each test.  The destructive and 
nondestructive test points on a peach sample are shown in 
Figure 1.  

 
Figure 1  Destructive and nondestructive test points on a peach 

sample 

2.2  Nondestructive sensors and measurements 
The experimental set-up included three nondestructive 

tests and one destructive reference measurement that 
were designed to detect firmness.  Each sample was 
processed successively through the three individual 
sensors for nondestructive measurements in the following 
order: 
2.2.1  Acoustic firmness sensor by Aweta 

Acoustic firmness measurements were done by using 
a commercial bench-top unit AFS designed by Aweta 
(Model DTF Vo.0.0.82, Nootdrop, The Netherlands) 
(Figure 2).  It was used to measure the resonance 
frequency of peaches.  This bench-top sensor first 
determines the weight of the peach by a small load cell, 
followed by gently tapping at the fruit[1].  The resulting 
sound is analyzed and transformed into the frequency 
domain to obtain the first natural or resonant frequency 

([Hz]).  To capture the acoustic vibration waveform, a 
small microphone was embedded in the flange of this unit.  
The Aweta acoustic firmness sensor gives two different 
types of measurements.  The firmness index (FI) is 
based on the acoustical measurement while the alternative 
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firmness index (AFI) is based on the impact measurement 
that evaluates the local surface elasticity.  The firmness 
index (FI) is determined from the resonant frequency of 
the first elliptical mode and the mass of the fruit[11]. 

2 2/3

610
f mFI 

 
               (1) 

where, FI is the firmness index of fruit samples;  is the 
first natural or resonant frequency, Hz; m is the fruit 
weight in grams. 

 

  
 

Figure 2  Nondestructive acoustic firmness sensor (AFS) 
 

2.2.2  Low-mass impact sensor by LPF 
A lateral low-mass impact sensor developed by 

Madrid Polytechnic University Physical Properties 
Laboratory was used in this study (Figure 3). 

 

 
Figure 3  Nondestructive low-mass impact sensor (LPF) 

 

  The impact device consists of a spherical low-mass of 
10 g, which impacts the sample, with a piezoelectric 
accelerometer of a sensitivity of 1 mV/m s-2 and a range 
of ±4900 m s-2 (ENDEVCO model 256-10 USA), which 
impacts the fruits to sense its firmness; a spring to release 
the impacting mass; and an electromagnet to hold the 
impacting mass.  A conditioning circuit supplies power 
to the accelerometer and also amplifies the acceleration 
signal.  Response of the accelerometer is samples at   
40 kHz sampling rate with 12 bit precision DAQ card.  
A Windows® based software was designed to control all 
the process which stores data and provides the users with 

an interface to manage the data and to control the 
measurement process[9].  Maximum acceleration (Amax), 
measured in m/s2 was extracted from the deceleration 
data registered by an accelerometer.  This parameter was 
commonly used as fruit firmness index[5,9,17]. 
2.2.3  Micro-deformation impact sensor by SIQ-FT 

Micro-deformation impact sensor made by Sinclair 
IQ™ (Sinclair internal quality firmness tester: SIQ-FT) 
was used for the nondestructive tissue impact response 
for micro-deformation on the fruit surface (Figure 4).  
The bench-top version sensor used a pneumatically 
operated impact head equipped with a piezoelectric 
sensor.  The sensor hits the fruit by an air pressure and 
captures the impact signal.  Its output was processed by 
proprietary software to return a measure of fruit firmness 
score as a number indexed from 0 to 100 with 0 being 
soft and 100 being firm.  The firmness, expressed as a 
SQI (Sinclair Quality Index) value is calculated according 
to the impact signal as a dynamic measure of fruit tissue 
spring constant and can be expressed by the following 
Equation[5,13,15]; 

2

max

( )d
P

SQI C
p t t

 
 
  

             (2) 

where, C is the system constant; Pmax is the peak 
amplitude of the impact response and p(t) is the impact 
response as a function of time. 

  
Figure 4  Nondestructive micro-deformation impact sensor 

(SIQ-FT) 

The distance between rubber support of sensor and 
the impact of the fruit was maintained at 25 mm.  
Vacuum and the operating pressure were adjusted to 
operate the pneumatic head to within ±1.99 kPa as 
recommended by the manufacturer.  Prior to each use 
the micro-deformation impact sensor was calibrated using 
an elastic calibration ball of a known firmness. 
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For the three nondestructive sensors, six repeated 
measurements for each peach were taken from three 
points within the longitudinal axis of the peach for two 
sides in each test.  Data were then averaged for each 
sensor, and the average of the measurement was supposed 
to represent peach firmness as a whole. 

Sensor data were acquired from each individual 
sensor.  The types of output values are given in Table 1. 

 

Table 1  Data acquisition structure 

Sensor type Sensors Features Units 

Acoustic firmness Firmness index Hz2·g2/3 

Low-mass impact Maximum 
acceleration m·s-2 Nondestructive 

Micro-deformation impact Quality index Score 

Destructive Magness-Taylor Maximum force N 
 

2.3  Reference measurements 
After nondestructive measurements using the three 

firmness sensors had been completed, the firmness of the 
tested peaches was measured by standard destructive 
methods from the same location.  The machine used for 
the reference destructive tests was a Texture analyzer 
TA-XT2 (STable Micro Systems Ltd., Godalming, U.K.), 
a universal machine with a texture analyzer 
microprocessor, it was connected to a PC, and controlled 
by specific software.  The load-cell admits a maximum 
force of 250 N (resolution 0.0098 N) and an error range 
of 0.025%.  Texture analyzer was used for the 
mechanical test to determine the firmness group of the 
test samples and to compare with the nondestructive 
techniques.  Magness-Taylor tests were performed by 
using an 8 mm diameter probe, at a deformation rate of 
18 mm/min on both sides of each fruit at six different 
points (Figure 1).  For destructive measurements, on 
each labeled place, a piece of skin was removed and 
Magness-Taylor probe penetrated at least 8 mm into the 
flesh.  Maximum force recorded on the force-deformation 
curve was selected and used as the measure of fruit 
firmness being expressed to be Magness-Taylor force 
(FMT).  

The relative firmness loss during the experiment 
period was calculated as the firmness loss in firmness 
divided by the initial firmness, multiplied by 100%. 
2.4  Statistical analysis 

Different sensor fusion techniques such as a high  

level, an intermediate level and a low level can be used as 
described by Steinmetz et al.[44].  The high level fusion 
was performed by using identity declaration provided by 
each sensor (Figure 5).  Since feature-level extraction 
has already been developed for each individual sensor, 
the decision-level was applied to the identity declaration 
level at each individual sensor (Figure 5). 

 
Figure 5  Architecture of high-level fusion 

 

Statistical classification was mainly depended on the 
Bayes minimum risk classifier.  This classifier was 
applied to each sensor for the firmness evaluation, and for 
separating the peaches into three categories called soft, 
intermediate and hard which widely used by the 
pos-harvest sorters. 

The data information of the sensors was processed to 
output the fused data.  Before data fusion is performed, 
data normalization has to be applied to the raw data 
provided by the sensors.  To improve the classification 
accuracy of peaches based on their firmness stage as 
monitored by the sensors, data fusion using Bayesian 
statistical approach was implemented.  Three sensors 
that output three characteristics and three firmness classes 
(soft, intermediate and hard) were proposed.  In 
principle, by assuming that data from each individual 
sensor is independent, the conditional probability density 
function of data fusion in a three-class problem can be 
calculated by using the Equation given by Baltazar et 
al.[47]. 

1
( | ) ( | ),

m
i j ij

p y w p x w


   i = 1, 2, 3, …n    (3) 

where, wi is the class; n is the number of classes; m is the 
number of features; y is a pattern vector which 
corresponds to the fused data; x is a one-dimensional 
variable and p(y|wi) is the probability density function for  
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each feature (FI, Amax and SQI). 
Priori knowledge was used in order to build Bayesian 

classifier and was set as indicated in Table 2.  These 
values were chosen based on the knowledge of the 
properties of each variety, and the ratios were arbitrarily 
chosen with the help of an expert in order to take into 
account this knowledge.  Each sample tested at different 
firmness stages was processed successively through the 
three individual sensors for nondestructive measurements 
described in Section 2.2.  The variety of the peaches 
appears to be an important factor in order to refine at the 
decision level because it influences the probability of 
occurrence of the firmness classes for each variety.  

 

Table 2  A priori probabilities determined for each variety 

Quality/Variety Soft Intermediate Hard 

Royal Glory 0.90 0.07 0.03 

Caterina 0.91 0.08 0.01 

Tirrenia 0.58 0.37 0.05 

Suidring 0.54 0.06 0.4 
 

Destructive measurements described in Section 2.3 
were used as reference firmness of peaches, and the 
peaches were classified into three classes “soft”, 
“intermediate” and “hard”.  A three-group firmness 
classification was created by using a 18-35 N Magness- 
Taylor force threshold.  Therefore, peaches between 
18-35 N were considered “intermediate”.  The peaches 
below 18 N and above 35 N were defined as “soft” and 
“hard”, respectively.  These firmness thresholds were 
selected because of critical change of peaches during 
postharvest ripening and the susceptibility to bruising 
damage[15]. 

Furthermore, other peach samples that did not belong 
to these classes were classified into two fuzzy classes: 
“intermediate or soft” for the samples that belongs 
sometimes to the “soft” or sometimes “intermediate” 
firmness class, and “intermediate or hard” for the samples 
that belongs sometimes to the “hard” or sometimes 
“intermediate” class.  By using this process five classes 
were created. 

The correlation coefficient indicates the strength of a 
linear relationship between two variables, and is the most 
interesting parameter before performing the fusion 
process.  The test for linearity of regression between 

nondestructive sensors and the destructive reference 
measurement (Magness-Taylor force) was made, and a 
confidence interval (90%) was computed for the 
correlation coefficient.  The correlation coefficients 
provided a check to be made on which sensor were 
redundant or complementary between two sensors, and 
produced some knowledge about the validity of the 
destructive reference measurement. 

The chi-square (χ2) test was used to determine 
whether there was a significant difference between the 
classification made by a nondestructive sensor and the 
classification made by the destructive sensor.  For each 
nondestructive sensor, the largest χ2 value indicated the 
nondestructive sensor that was most closely related to the 
destructive sensor. 

The coefficient of contingency (C) can be computed 
using Equation (4): 

2

( 1)
XC

n q



                (4) 

where, n is the sample number and q is the class number. 
The coefficient C provided a measure of association 

between the classification made by the sensors.  This 
coefficient is interesting because it provides the 
performance of the fusion on a normalized scale.  The 
value of C was computed based on the χ2 values. 

3  Results and discussion 

The correlation values and 90% confidence intervals 
between the sensors were given in Table 3.  Table 3 
shows the sensor similarities based on raw data.  For a 
linear regression model between nondestructive and 
destructive measurements, the confidence intervals of the 
correlation coefficients from sensor “acoustic firmness” 
and low-mass impact” do coincide.  It means that the 
percentage of variation in the firmness measurement does 
not change significantly at a 90% confidence level from 
acoustic firmness sensor to low-mass impact sensor.  
The correlation coefficient between the nondestructive 
sensors and destructive was found different for the 
micro-deformation sensor.  

Figure 6 shows the mean peach firmness loss for four 
peach varieties, as perceived by the destructive and three 
nondestructive sensors.  It can be observed that all four 
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devices are capable to sense the firmness loss of the 
peaches during the experiment.  The relative firmness 
loss during the experiment period for “Royal Glory” in 
the case of Magness-Taylor force was 82.71%, for the 
Aweta 38.27%, for the SIQ-FT 24.09% and for the LPF 
21.73%.  These values for “Caterina” variety were 
found to be 55.60%, 52.01%, 38.22% and 28.58%, 
respectively.  The mean firmness losses for “Tirrenia” 
and “Suidring” varieties in the case of Magness-Taylor 
force were 47.13% and 91.20%, for the Aweta 51.07% 
and 52.67%, for the SIQ-FT 21.04% and 32.62% and for 
the LPF 30.54% and 28.24%.  It means that peaches 
loose more firmness in case of Magness-Taylor force 

compared to Aweta, SIQ-FT anf LPF, respectively.  
Furthermore, for the Magness-Taylor force, the firmness 
loss was more pronounced in the first day of the 
experiment whereas the decline was observed almost in 
the whole period for Aweta, SIQ-FT and LPF as can be 
found in Figure 6. 

 

Table 3  Correlation coefficients and 90% confidence intervals 
between the sensors 

 Acoustic 
firmness 

Low-mass 
impact 

Micro- 
deformation 

Magness- 
Taylor 

Acoustic firmness 1 0.861** 0.779** 0.663** 

Low-mass impact  1 0.913** 0.684** 

Micro-deformation   1 0.766** 

Magness-Taylor    1 

Note: ** Correlation is significant at the 0.01 level. 

 
Note: The vertical lines indicate the standard deviation. 

Figure 6  Mean peach firmness loss during storage day at 20°C for destructive and three nondestructive sensors 
 

The results for unsupervised firmness classification 
based on the destructive firmness sensor were given in 
Table 4.  Furthermore, the decision boundaries used by 
experts[15] for classification of peach firmness were 
presented in Table 5.  The classification given in Table 5 
were found to be similar to the firmness classes provided 
by unsupervised firmness classification since the mean 
values of the two fuzzy classes “soft or intermediate” and 
“intermediate or hard” were more or less similar to the 

limits used by the expert.  Unsupervised classification 
allows classes to be defined without firm limits.  These 
fuzzy classes allow inclusion of samples for which it is 
not easy to determine the correct classification between  
“intermediate” and “hard” firmness classes. 

Tables 6-8 show the number of peaches resulting 
from the classification of three nondestructive sensors 
with a Bayesian classifier.  The classification 
performance was evaluated by computing the number of 
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errors.  As a general rule, an error occurs when the 
constituted firmness class provided by the nondestructive 
sensor is different from the firmness class constituted by 
the destructive reference measurement.  The percentage 
error was defined as the total number of errors divided by 
the total number of samples.  It can be seen from Tables 
6-8 that the total error rate of the classification of 
micro-deformation impact sensor is 19%, lower than the 
acoustic firmness and low-mass impact sensor.  Values 
for acoustic firmness and low-mass impact sensor were 
found to be 25% and 24%, respectively.  The source of 
classification error for the three nondestructive sensors 
can be due to the small size of the middle and hard 
samples assigned randomly.  Furthermore, it could also 
come from the destructive reference measurements even 
though all the nondestructive sensors agree. 

 

Table 4  Results for unsupervised firmness classification of 
destructive reference measurement for four peach varieties 

Quality Soft Soft or 
Intermediate Intermediate Intermediate  

or Hard Hard 

Number of fruits 91 26 2 7 10 

Mean 6.07 16.14 26.29 29.87 54.69 

Standard deviation 4.81 8.90 11.08 12.74 7.43 

Min 0.91 1.66 18.5 18.39 41.13 

Max 18.08 29.36 34.13 53.44 64.34 
 

Table 5  Peach firmness classification used by experts[15] 

Quality Soft Intermediate Hard 

Magness-Taylor <18 18≤x<35 x≥35 
 

Table 6  Classification for acoustic firmness sensor 

 Destructive reference measurement 

 Soft Soft or 
Intermediate Intermediate Intermediate  

or Hard Hard 

Nondestructive sensors 

Soft 100 0 2 1 0 

Intermediate 20 0 0 1 0 

Hard 2 0 9 0 1 

Note: Total error: 25%. 
 

Table 7  Classification for low-mass impact sensor 

 Destructive reference measurement 

 Soft Soft or 
Intermediate Intermediate Intermediate  

or Hard Hard 

Nondestructive sensors 

Soft 103 0 0 0 0 

Intermediate 0 21 0 0 0 

Hard 0 0 0 12 0 

Note: Total error: 24%. 
 

Table 8  Classification for micro-deformation impact sensor 

 Destructive reference measurement 

 Soft Soft or 
Intermediate Intermediate Intermediate  

or Hard Hard 

Nondestructive sensors 

Soft 101 0 0 2 0 

Intermediate 19 0 0 2 0 

Hard 0 3 0 0 9 

Note: Total error: 19%. 
 

Results of fusion classification by using three 
nondestructive sensors were given in Table 9.  These 
results were obtained through a Bayesian classifier 
associated with each individual sensor, and the fusion 
classification method.  Results of Table 9 should be 
compared with the classification given by each individual 
sensor as shown in Tables 6-8.  The fusion processes 
decreased the classification error rate from 19% to 13%.  
Even though there was a decrease in error rate value 
determined by using all the nondestructive sensors some 
peaches were assigned to different firmness classes.  For 
instance, the classification of the peaches into class “soft”, 
could not be improved if they actually belonged to class 
“intermediate” or “hard”.  These classification errors can 
be due to the fact that only one feature was used (Amax) 
from the low-mass impact sensor because other features 
that can be used for low-mass impact sensor such as 
impact duration at maximum acceleration, maximum 
acceleration/impact duration at maximum acceleration, 
maximum deformation, contact time were not taken into 
consideration in present study.  Furthermore, the 
numbers of peaches used in our study for soft, 
intermediate and hard firmness groups of all the peach 
varieties were 103, 21 and 12, respectively.  It should be 
taken into consideration that the big difference in the 
numbers of samples among the three firmness groups and 
small numbers of intermediate and hard peaches will 
impair the total error rate of the firmness classification 
even though unsupervised classification was made to 
build the classes based on destructive reference 
measurement.  Lastly, six measurements were made for 
each peach, and these data were averaged.  This can be a 
source of error for the classification because averaging 
leads to a loss of information. 
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Table 9  Classification for the fusion process by using three 
nondestructive sensors 

 Destructive reference measurement 

 Soft Soft or 
Intermediate Intermediate Intermediate  

or Hard Hard 

Nondestructive sensors 

Soft 100 3 0 0 0 

Intermediate 16 0 2 3 2 

Hard 1 0 0 1 10 

Total Error: 13%. 
 

Table 10 describes the results when one of the sensors 
was removed from the fusion process.  As seen in Table 
10, fusion of the acoustic sensor with low-mass impact 
sensor or micro-deformation sensor does not change the 
classification error rate sufficiently.  However, fusion of 
the low-mass impact and micro-deformation impact 
sensors without acoustic firmness sensor provided a 
classification error rate which was higher than the one 
provided by the fusion system with the three 
nondestructive sensors.  In the fusion process, the three 
sensors should be fused in order to obtain the best results 
with an error rate value of 13%.  

 

Table 10  Classification results by removing one of the 
nondestructive sensors 

Sensor combination Error rate/% 

Acoustic firmness and low-mass impact 23 

Acoustic firmness and micro-deformation impact 21 

Low-mass impact and micro-deformation impact 17 
 

Table 11 shows the different computed values of χ2 
and C for each nondestructive sensor.  χ2 values were 
computed based on the results of the classification of 
each sensor, and the results of the fusion sensor 
classification.  χ2 values given in Table 11 showed that 
micro-deformation impact sensor gave the best 
classification with a χ2 value of 272.00.  Contingency 
coefficient (C) values were computed based on the χ2 
values from Table 11.  C value computed for the 
micro-deformation sensor was found higher than the C 
values of other two sensors.  Furthermore, the 
correlation coefficient value for the fusion process of 
three nondestructive sensors with a correlation coefficient 
of 0.84 was found larger than any other coefficient given 
in Table 11.  This situation shows us that the fusion 
process was efficient in improving the classification.  

Furthermore, it can be seen that the order of the C 
coefficients confirms the classification of nondestructive 
sensors that was found with the correlation coefficient. 

 

Table 11  χ2 and coefficient of contingency (C) values for the 
different sensors 

Destructive 
measurement 

Nondestructive 
sensors χ2 values Prob. C Prob. 

Acoustic firmness 93.000** 0 0.637** 0 

Low-mass impact 139.523** 0 0.712** 0 Magness-Taylor 
force Micro-deformation 

impact 272.000** 0 0.816** 0 

4  Conclusions 

In the present study, the possibility of fusing the 
nondestructive firmness sensors (acoustic firmness, 
low-mass impact and micro-deformation impact) was 
evaluated with data fusion approach for firmness 
classification of four peach varieties.  This fusion 
process integrated the features extracted from each 
individual sensor, and associated them with a Bayesian 
classifier which performed a joint identity declaration of 
peaches among three firmness classes namely, soft, 
intermediate and hard. Correlation coefficient, χ2 test and 
coefficient of contingency were described in order to 
determine whether the fusion method enhance the 
firmness classification or not.  All the coefficients 
showed that the fusion process was more efficient than 
any individual sensor.  In the case of fusion process, 
results demonstrated that each sensor had varying 
abilities of sensing firmness.  High level fusion 
technique performed by using identity declaration led to 
greatly improved and more consistent classification of 
firmness.  The fusion of three nondestructive sensors 
decreased error rate to 13% while it varied from 25% to 
19% for each individual sensor.  Significantly better 
firmness classification was obtained with an error rate of 
17% when a low-mass impact sensor was fused with a 
micro-deformation impact sensor.  Fusion process used 
in the present study can also be applied to measure 
various external or internal properties of fruits.  It should 
be noted that harvest season, variety variation and growth 
conditions can influence the Bayesian classification since 
statistical parameters that define the prior probabilities 
might change.  On principle, data fusion methodology 
described in our study can be used in order to extrapolate 
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to other postharvest products which the quality control of 
products is also necessary.  But, it is important to 
consider the big difference in the numbers of samples 
among the firmness groups which would impair the 
overall accuracy rate and reliability of firmness 
classification.  Further research based on the sensor 
fusion technique for firmness classification of other fruit 
species is needed in order to develop a more accurate 
system by using a wider number of parameters for each 
individual sensor. 
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