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Abstract: The objective of this research is to analyze the influences of light source incidence angle, fiber height, moisture

content, and particle size on loamy mixed soil spectra. Nitrogen (N) content calibration and cross-validation models at

different moisture contents and particle sizes were obtained using partial least squares (PLS) analysis. Spectral data were

collected using a spectrophotometer. Fiber height of 100 mm and light source angle at 45 were chosen to obtain the

sharpest spectra without apparent scattering effect. The results show that moisture content and particle size strongly

influenced the absorbance of the spectra, and a better N prediction model was obtained when the particle sizes were in the

ranges of 0.5-1.0, 1.0-2.0 and 2.0-5.0 mm, with the correlation coefficients (r) of 0.819, 0.815 and 0.818, and standard

errors of prediction (SEP) of 2.29, 2.41 and 2.42 mg/kg, respectively. Poor N prediction model was obtained when the soil

was kept in its natural moisture content with r of 0.575 and SEP of 3.275 mg/kg, compared to the performance of dried

soil samples with r of 0.815 and SEP of 2.425 mg/kg.
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1 Introduction

Near infrared reflectance (NIR) spectroscopy is a

technique that is used to analyze the diffuse reflectance

radiation regarding chemical constituents in the

materials[1-3]. It has been adopted in agriculture, as well as

other disciplines, as a rapid and accurate technique that

has the ability to analyze many constituents at the same

time. There have been several attempts to assess soil

properties in previous studies. Lee et al. estimated

chemical properties of Florida soils using the spectral

reflectance[4]. Brown et al. used visible and near-infrared

diffuse reflectance spectroscopy for soil C prediction in

Montana[5]. Brown et al. applied visible and near-infrared
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diffuse reflectance spectroscopy to predict soil content,

including organic and inorganic C[6]. Waiser et al. valued

soil clay content with visible near-infrared diffuse

reflectance spectroscopy[7].

Spectral features of soil materials in the NIR

(750-2500 nm) spectral region are associated with

vibration modes of functional groups that are overtones or

the combination of vibration bands of light atoms with

strong molecular bonds, for example, chemical bonds that

contain H attached to atoms such as N, O, or C[8]. It may

be possible to measure soil constituent such as moisture,

organic C, and N using the NIR technique. Each soil

property especially of minerals has distinct spectral

fingerprints in the NIR region because of relatively strong

absorption of the overtones and the combination modes

[OH]-1, [SO4]
-2 and [CO3]

-2[9,10]. The large particle size

(＞1.6 mm) used by Krisnan et al. may at least partly

account for the failure to predict organic matter by

reflectance technique in the NIR region[11]. Wetzel

concluded that particle size, shape, and the voids between

them could affect the path length, and thereby influence

absorbance[12]. Dalal and Henry had studied the reflection

energy from soils and they agreed that particle size,
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moisture content and organic matter affected the

reflection of radiant energy[13]. They also found that the

reflectance increased exponentially with the decrease of

particle size up to 0.4 mm. Berntsson et al. estimated the

effect of sample size when analyzing powders with

diffuse reflectance near-infrared spectrometry[14]. Khanna

et al. developed the angle indexes for soil moisture

estimation, dry matter detection and land-cover

discrimination based on NIRS[15]. All those references

indicated that the quality of an infrared spectrum strongly

depends on the method of sample preparation including

its particle size, moisture content and optical interface

between the samples and infrared instrument, but there is

no definite conclusion about the influence of particle size

and moisture content on loamy mixed soil.

The objective of this research work was to analyze the

influences of particle size and moisture content on loamy

mixed soil spectra. Besides, prediction models for

nitrogen (N) content at different moistures and particle

sizes were obtained to study the influences of these

properties on N prediction, as well as to investigate the

future applications of NIR spectroscopy as a rapid

measurement technique in the field.

2 Materials and methods

The experimental site was located in Hangzhou,

Zhejiang (12011’E, 3028’N). Figure 1 shows the

location of the soil samples. The soil was classified as

loamy mixed active thermic Aeric Endoaquepts (Granule

is up to 50%, and contains a few gravels) according to

Zhejiang soil classification. Measurements were taken at

30 sample plots, at a depth of 0-20 cm and grid interval

of 2 m using the normal grid method with a GPS receiver

(AgGPS 132, Trimble, Inc., USA). Soil samples were

collected using a soil sampling auger. A composite

sample was obtained by mixing five soil samples of equal

volume, one of which was obtained from the central plot

and the remaining four separated 1 m away from each

other. Total of 30 soil samples were collected and

analyzed in this research. The collected soil was divided

into two groups (A and B), and each group was placed in

a bag properly close to vacuum.

Figure 1 Location of the soil samples

Group A was tested for total N using the Kjeldahl

method at the Soil Science Laboratory in Zhejiang

University. The range of the N content was from 59.93 to

76.00 mg/kg with the average of 68.05 mg/kg and

standard deviation (SD) of 3.95 mg/kg.

Group B was analyzed using the NIR spectroscopy

technique. Spectral data collection was performed with a

spectrophotometer (ASD, FieldSpec Pro FR (350-2500

nm)/ A110070). Soil samples were set in a petri dish with

the surface flushed. Absorbance spectra were completed

from 350-2500 nm, and the wavelength increment was 2

nm. Absorbance spectra were taken over the central area

of the petri dish at three positions by rotating the sample

approximately 120ºbetween each position. Twenty scans

were performed at each of the three positions. All spectra

recorded were checked visually and averaged using

ViewSpec pro version 2.14 and exported to multivariate

analysis software, The Unscrambler 9.5 (CAMO ASA,

Norway).

Prediction models for N content at different moistures

and particle sizes were also analyzed in this paper to

study the influence of these properties on N prediction.

Spectra of total 30 soil samples in different moisture

contents and particle sizes were analyzed, and N content

calibration and cross-validation models at different

moisture contents and particle sizes were also obtained

using partial least squares (PLS) analysis.

3 Results and discussion

3.1 Spectral features at different fiber heights and

light source incidence angles

To investigate the possible applicability of NIR

spectroscopy on site, the spectra of five samples were

recorded at different heights over the soil surface to

analyze the influence of fiber height on spectral features.

To perform this analysis, the optical fiber was attached to

a tripod and placed 50, 100, 150 and 200 mm above of

the sample surface. The spectra of five samples each at
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different heights from the light source were recorded

using the same equipment and scanning procedure

described above. Figure 2 shows the mean absorbance

spectra of the samples at different fiber heights. It can be

seen that the absorbance spectral patterns were similar for

different heights. They followed the same geometrical

behavior, starting with high absorbance and decreasing

with the increase of wavelength. There were two major

absorption peaks around 1400 and 1900 nm. A slightly

smaller absorbance with smaller effect of scattering can

be seen at the height of 50 mm, while the absorbance

spectra were almost the same when the heights were 150

and 200 mm. Most of the time, 100 mm showed the

highest absorbance, probably due to the specific

experimental setup. After applying a smoothing

correction, this spectrum was found to be the most

representative. Although the difference was not

considered as great when heights were 50, 150 and 200

mm, 100 mm was used as the standard height for later

experiments.

Figure 2 Mean absorbance spectra at different heights

Spectral features in different light source angles, that is,

the quantity of light, was also analyzed. The spectra of

five samples were recorded at three different light source

angles at 20, 45 and 60. To measure the angle of the

light source, a T ruler was placed perpendicularly to the

table surface (the NIRS equipment is also on this table) as

the reference, and the angle was measured using a

protractor. Each spectrum, including that of the Teflon

standard measured prior to each reflection spectrum, was

recorded as an average of 60 scans. The absorbance

spectra of five samples were recorded consecutively in a

light source position, and then the angle was changed and

carefully measured repeating the same procedure until

completing the measurements (Figure 3). It could be

found that the three spectra followed the same

geometrical characteristics with an obvious difference in

the absorbance values among them. The highest and

sharpest absorbance spectrum was obtained at 45. The

spectrum recorded at 60 showed a slightly higher

absorbance than the spectrum recorded at 20 with a

transpose of both spectra at 1870 and 2097 nm, which

mainly could be caused by scattering in the spectra. All

three angles could be used in prediction performance with

NIR spectroscopy. Therefore, 45 was chosen as the

standard light source angle for later experiments.

Figure 3 Mean absorbance spectra of the samples at three

different angles of light source.

3.2 Spectra features at different soil moisture contents

To analyze the soil spectral features in different

moisture conditions, three samples were taken randomly

from the population, sieved to ＜2 mm and divided into

two sub samples (each original sample, two sub samples).

One sub sample was dried at 40C, while the other was

kept in plastic bags properly sealed to vacuum until the

first sub sample was dried and ready to be scanned. Once

the first sub sample was ready, the absorbance spectra of

both sub samples were recorded (Figure 4). Figure 4

shows the spectral features of the dried and humid soil

samples (the average water content of humid soil samples

was 16.06 %). All samples analyzed had similar shape in

the visible and near-infrared absorbance spectra. The

humid soil had high optical density in the visible light

region, and two major absorption peaks (around 1400 and

1900 nm) in the near-infrared region. High absorbance

could be observed in samples without drying treatment

with two prominent peaks in 1400 and 1900 nm

obviously related with the presence of water, as well as

other minor peaks along the spectrum from 2000-

2500 nm, especially near 2500 nm. The high optical

density is mainly caused by the high moisture content.

Figure 4 Mean absorbance spectra of humid soil and dried soil
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3.3 Spectra features at different soil particle sizes

To analyze the particle size influence on the spectral

features, all samples were air-dried (40℃) and subjected

to two different analyses. Firstly, the optical density [log

(1/R)] spectra of three soil samples manually crushed, and

three sieved to ＜2 mm were compared. Secondly, the

mean optical density spectra of five samples previously

sieved to five different particle sizes (＜0.25 mm; 0.5-

1.0 mm; 1.0-2.0 mm; 2.0-5.0 mm, and ＞5.0 mm) were

analyzed. For the first analysis, three soil samples were

taken randomly from the population and manually fluffed

without sieve, and then the scan was performed. Once the

scanning was completed, the three samples were gently

crushed in an agate mortar, sieved to ＜2.0 mm, and

placed in a petri dish again for a second scan. During the

second analysis, five samples, also randomly selected,

were sieved to ＜0.25, 0.5-1.0, 1.0-2.0, 2.0-5.0 and

＞5.0 mm, to form five sub samples. These sub samples

were scanned following the same procedure previously

explained for the first experiment (Figure 5 and Figure 6).

Figure 5 Mean absorbance spectra of three samples,

sieved and non-sieved.

Figure 6 Mean absorbance spectra of five samples sieved

to five different particle sizes.

In Figure 5, the spectra of the three samples manually

crushed show the same shape in the visible region

(400-800 nm), but a prominent descending appears in the

near-infrared region, which makes the spectral shape

different. Also these samples had higher absorbance than

those of the samples sieved to ＜2 mm. This is a

consequence of the particle size, shape, and the voids

among them. The arrangement of particles affects the

path length and thereby influences absorbance[11]. On the

other hand, it also demonstrates that in addition to the

chemical constituents of a material, near-infrared spectra

are also influenced by the physical structure of a material.

Figure 6 shows the mean spectra of five samples

previously sieved to five different particle sizes. All of

the spectra followed the same shape in the visible and

near-infrared region showing a decrease of absorbance

with the decrease of particle size. A slight overlapping

can be observed among the spectra recorded in samples

with the particles sizes of 1.0-2.0, 2.0-5.0 and ＞5.0 mm,

which means that there are no significant differences in

the compositions. The spectra representing samples with

particle sizes between 0.5-1.0 and ＜0.25 mm showed

less optical density due to a consequence of a decrease in

size and the voids between them.

3.4 Influence of soil moisture content on N prediction

To study the capability of NIRS to predict N content

in a loamy mixed soil without any dried treatment, 30

samples were sieved to ＜2.0 mm, and their absorbance

spectra were obtained. After that step, each sample was

put back in the corresponding original bag, and shaken up

to homogenize the mixture again. Later, all samples were

sieved again and stored in containers for at least 24 h at

40℃ until reflectance was measured.

Soil is a heterogeneous mixture of various chemical

compounds, and thus a unique spectral response for soil

properties is by no means certain. One method of

evaluating the spectral response for a soil property is to

study the relationship among wavelength, optical density,

and the values of the soil property. As a result, the most

important techniques for NIR are how to extract

quantitative information from them. Various calibration

methods have been used to relate near-infrared spectra

with measured properties of materials. Principal

components regression (PCR), partial least squares (PLS)

regression, stepwise multiple linear regression (SMLR)

and artificial neural networks (ANN) are the most

commonly used multivariate calibration techniques for

NIRS. PLS is usually considered for a large number of

applications in chemical analysis and is widely used in

multivariate calibration, for it takes the advantage of the

correlation relationship that already exists between the

spectral data and the constituent concentrations. It

performs the decomposition on both the spectral and

concentration data simultaneously[4]. This causes spectra

containing higher constituent concentrations to be

weighted more heavily than those with low

concentrations. It is a good alternative to the traditional

multiple regression analysis and PCR. PLS regression

analysis was applied in this research, and leave-one–out
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cross–validation was done on the calibration set to

determine the optimum number of factors (F) for the PLS

regression calibration[16-18]. The best calibration is the one

with the lowest root mean square error of prediction

(RMSEP), standard error of prediction (SEP), the

standard error of calibration (SEC), and the highest r

(coefficient of correlation) but also a small difference

between SEC and SEP[19]. The SEC, SEP and RMSEP

were defined previously[10].

The NIR spectroscopy potential to predict N content

was carefully analyzed both with and without previous

drying treatment of the samples (Figure 7 and Figure 8).

It will help to determine if NIR spectroscopy can be

applied on site. The calibration and cross-validation

results of PLS models were calculated when the F was 6.

The SEC (2.264 mg/kg) and SEP (2.425 mg/kg) of the

dried soil samples were adequately lower than those of

the humid soil samples (SEC=3.061 mg/kg and

SEP=3.275 mg/kg). This is basically an effect of the soil

moisture content on the absorbance spectra which causes

the light scattering and changes light path lengths that

may be partially but not entirely removed by spectral data

pretreatments. The results show the r and RMSEP of the

dried soil samples (0.815 and 2.384 mg/kg respectively)

are both desirable to validate the PLS model, which are

better than those of the humid soil samples (r=0.575 and

RMSEP=3.220 mg/kg).

Figure 7 Nitrogen, calibration and cross-validation results using soil samples previously dried

Figure 8 Nitrogen, calibration and cross-validation results using soil samples with their original water content

3.5 Influence of soil particle size on N content

prediction

In order to study the influence of soil particle size on N

content prediction, 30 samples passed through different

sieves (＜0.25 mm; 0.5-1.0 mm; 1.0-2.0 mm; 2.0-

5.0 mm and ＞5.0 mm) were placed in the containers and

stored for at least 24 h at 40℃ until reflectance was

measured. Absorbance spectra were performed using the

same equipment, and the statistical analysis was the same

as described above.

Based on the results, NIR spectroscopy can be used to

predict N content with seven factors when the particle

sizes vary from 0.5-1.0; 1.0-2.0 and 2.0-5.0 mm with r

of 0.819, 0.815, 0.818; SEC of 2.117 mg/kg, 2.264 mg/kg,

2.297 mg/kg, and SEP of 2.265 mg/kg, 2.425 mg/kg,

2.414 mg/kg, respectively. A slightly better result was

obtained when the particle size was between 0.5-1.0 mm,

but there were no significant differences among them. For

these three specific cases, the discrepancy should have

little effect on the NIR spectroscopy predictions as long

as the procedures are consistent. Less reliable models

were found when the particle size was ＜0.25 and ＞5.0

mm, with r of 0.636 and 0.757, SEC of 3.463 mg/kg and

2.619 mg/kg, and SEP of 3.712 mg/kg and 2.775 mg/kg,

respectively (Figure 9, 10, 11, 12, 13). This is basically an

effect of the particle size on the absorbance spectra which
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causes the light scattering and changes light path lengths,

or an effect of sample physical properties that may be

partially but not entirely removed by spectral data

pretreatments. Thereby, increasing or decreasing

considerably particle size decreased NIRS accuracy.

Figure 9 Nitrogen, calibration and cross-validation results in soil sieved to ＜0.25 mm

Figure 10 Nitrogen, calibration and cross-validation results in soil sieved to ＜0.5-1.0 mm

Figure 11 Nitrogen, calibration and cross-validation results in soil sieved to 1.0-2.0 mm

Figure 12 Nitrogen, calibration and cross-validation results in soil sieved to 2.0-5.0 mm
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Figure 13 Nitrogen, calibration and cross-validation results in soil sieved to ＞5.0 mm

4 Conclusions

1) Fiber height of 100 mm and light source angle at

45 were chosen, which presented the sharpest spectra

without apparent scattering effect in all heights and

angles used.

2) Higher absorbance and different spectra shape were

found when the samples were gently hand crushed than

when the samples were sieved to ＜2 mm. On the other

hand, absorbance decreased notably with the decrease of

particle size. NIRS can be used to predict N content when

the particle sizes vary from 0.5-1.0, 1.0-2.0 and 2.0-

5.0 mm with r of 0.819, 0.815, 0.818, and SEP of

2.265 mg/kg, 2.425 mg/kg, 2.414 mg/kg, respectively.

3) Poor N content prediction was obtained when the

soil was kept in its natural moisture, which was basically

because the response of near spectra to water content

could mask or affect other constituent prediction. In this

analysis, NIR spectroscopy appeared to be better when

the model was built using dried soil than humid one.
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