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Abstract: Semi-circular open channel plays an important role in various applications and the measurement of its discharge is of

interests. In this study, theoretical formulae for free overflow in a semi-circular channel are developed and presented for the

discharge and wetted area relationship. The traditional discharge formulation and available experimental data are used to

verify and validate the proposed relationships. The discharges calculated by using the proposed relationship show very good

agreement with the experimental data sets. The results from this study supply the basis for circular weir development.
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1 Introduction

The measurement of stream discharges or flow rates

in open channels with weirs of various designs has been a

classic topic of interests to many practical engineers[1].
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Formulae for the steady-state discharge as functions of

hydraulic heads are presented in many standard civil[2]

and chemical engineering[3] text books for weirs of simple

geometric shapes, such as rectangular and triangular (or

V-notch).

Kadlubowski et al.[1] stated many advantages of the

circular weirs, such as free turning of the weir crest

enabling it to be standardized by precise positioning and

the ease of manufacture. Moreover, the weir crest does

not have to be leveled in terms of cross section during

installation, and the point of zero flow is readily

determined. The use of semi-circular channels is

common in sewer systems and tunnels. Since the

hydraulic conditions in a pipe partly filled with water

under atmospheric condition are the same as those in a

semi-circular channel, research on the formulation of

semi-circular weir flow is also of importance to that

situation, particularly for environmental applications.

Dey[4-6] and Ahmad[7] conducted theoretical and

experimental studies on free overflow in an inverted
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semi-circular channel. In fact, despite their advantages,

circular weirs are not commonly used for measuring

discharge, perhaps because of the cumbersome

mathematics associated with them[1]. Specifically, the

functional relationship between the hydraulic head and

the volumetric liquid discharge incorporates elliptic

integrals as described in the classic paper by Stevens[8] or

is expressed with several variables including

trigonometric functions. Consequently, in most cases it

has not been considered to be convenient for practical

engineering applications. The need for discharge

measurements naturally raises the demand for a simple

formula relating discharge to the wetted area.

According to the energy equation for open channel

flow[9], the liquid volumetric discharge across the weir is

simply proportional to the 3/2 power of the height of the

liquid crest for a rectangular weir, and to the 5/4 power

for a triangular weir, as in Equation (1a) and Equation

(1b), respectively:

2

3

AQR  (1a)

4

5

AQT  (1b)

Where: QR/QT is the volumetric discharge for

rectangular/triangular weir, m3/s; A the wetted area, m2.

Figure 1 shows the geometrical relationships of the

cross-section of the three different weir channels, i.e.

rectangular, triangular and semi-circular channels.

Figure 1 appears to state that there should exist a similar

Q-A relationship for semi-circular weir or a partly filled

circular weir, but with a different exponential value of

between 5/4 (for a triangular weir) and 3/2 (for a

rectangular weir). Depending upon the shape of the

open channel, the appropriate equation can be adopted to

determine the discharge rate of the steady-state inflow

from an upstream source, given the wetted area of the

liquid therein.

A mechanic-electronic sensor for automatic

measurement of sediment-laden discharge from erosion-

runoff plots was presented by Qu et al.,[10], in which a

load cell is used to sense the mass of water in a measuring

pipe section. For the given mechanical structures, the

sensed mass of water in the measuring pipe section is

proportional to the discharge/flow rate. The hydraulic

principles and computational model of the sensor were

based on a function relation between discharge and the

mass or the cross-sectional area of water flow.

Figure 1 Cross-sectional diagram for triangular, rectangular and

semi-circular channels

The objectives of this paper are: 1) To develop the

theoretical relationship between the discharge and the

wetted area of a semi-circular open channel based on

hydraulic characteristics with appropriate mathematical

approximations; 2) To validate the newly-developed

equations and the parameters with the data from various

sources.

2 Mathematical model derivation

The relationship among the discharge rate, wetted

area and hydraulic radius are given by the Chezy and

Manning equations (Equations (2) and (3)) as follows:

Q
AC R

i
 (2)

1

6
1

C R
n

 (3)

Combining Equations (2) and (3) gives:

21

32
1

Q Ai R
n

 (4)

Where: Q is the discharge rate of water, m3/s; i is the

hydraulic gradient, m/m; A is the cross-sectional area of

water flow, m2; C is the Chezy coefficient, m1/2/s; R is the

hydraulic radius, m; and n is the Manning coefficient,

dimensionless.

Combining Equation (4) with Equation (1a) or

Equation (1b) yields the R-A relationship for a rectangular

weir (5a) and for a triangular weir (5b), respectively:

3

4
1R A (5a)

3

8
2R A (5b)

Where: σ1 and σ2 are proportional constants.

In a semi-circular channel or a pipe partly filled with
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water under no pressure, the hydraulic radius and wetted

area are calculated by Equation (6) and Equation (7),

respectively as follows:

sin
1

4

d
R





 
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 
(6)

2

( sin )
8

d
A    (7)

Where: d is the diameter of the circular channel, m; and

φ is the central angle of the wetted perimeter, radians

(Figure 1). According to the relationship between the

hydraulic radius and the wetted area of a rectangular weir

and/or a triangular weir, the relationship for a

semicircular channel or a pipe partly filled with water

under no pressure is given as follows:

R A (8)

Where: σis a constant; χis a power index to be estimated

further. Combining Equation (6) and Equation (7) with

Equation (8) gives the following relationship:
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Rearranging the equation gives:

3 2 1

2 1
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const

A d

 
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Simplifying Equation (9b) gives:

1

1

( sin )R
K const

A





 




  (9c)

Where: K1 is a proportional constant.

The Taylor series expansion for sinφ is written at the

point φ=0 as follows:

3 5 2 1

sin ( 1)
3! 5! (2 1)!
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Arbitrary truncation of the series gives an error,

which is quantified by the residues of the truncated series,

expressed as follows:
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With different truncated terms, the maximum

residue in the range between 0 and π is estimated as

shown in Table 1.

Table 1 Residual term and the estimate of the maximum Rn

from Equation (11)

N sinφ Max(Rn(φ))

1 φ 935.4
!2
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For an error less than 4.303E-6, sinφ is given as

follows:

3 5 7 9 11 13 15

sin
3! 5! 7! 9! 11! 13! 15!

      
         (12)

Substituting Equation (12) into Equation (9c) yields:

13 5 7 9 11 13 15

1

3! 5! 7! 9! 11! 13! 15!R
K

A





      




 

      
 

(13)

To simplify the formula, the numerator in Equation

(13) is used to build another function (Equation (14)). It

is used to regress the computed data from different φ

values ranging from 0 to π, shown in Figure 2.

Figure 2 Curve of the polynomial regression for the sine

function (Equation (14)) against the independent variable

With a very high coefficient of determination

(0.9988), the regression coefficient in Equation (15) was
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determined to be K2 = 0.2, the exponential index, b to be

2.43.

3 5 7 9 11 13 15

( )
3! 5! 7! 9! 11! 13! 15!

f
      

        (14)

2.43
2( )f K  (15)

Substituting Equation (15) into Equation (13) yields:

2.43 1
2

1

( )KR
K const

A











  (16a)

 1.43 2.43

3

R
K const

A




   (16b)

Equation (16b) requires that the coefficient χmust be

0.5885 which gives the exponential index in Equation

(16b) to be zero. The values of R/d and A/d2 are

normally provided as tabulated data sets[9]. The data

sets fom experiments with the partly filled circular pipe,

as given by Armando[9], were regressed with Equation (8)

and shown in Figure 3. The two sets of data as given by

Armando[9] and those computed with Equation (8) are

very well correlated, with the determination coefficient,

R2, being 0.9993. The regressive coefficient, σ, being

0.4453, with χ being 0.5994, which is very close to

0.5885, the value estimated by the mathematical method.

This indicates that Equation (8) and the estimated

parameter χare rational and reasonable. The other two

fitted curves in Figure 3 are those computed by giving an

exponential index value of 3/4 (for a triangular weir) and

3/8 (for a rectangular weir) in Equation (8). The curve

regressed with the formula for circular weir (Equation (8))

lies between those for triangular weir and rectangular

weir, which just agrees with the concept illustrated in

Figure 1.

Figure 3 Regressed relationship between the hydraulic radius

R/d and the wetted area A/d2 of a partly filled circular pipe

The exponential index in Equation (8) is 0.5994 from

regression and 0.5885 from the hydraulic and

mathematical concepts. They do not differ significantly

from 3/5, as far as engineering applications concerned.

Therefore, the relationship between A and R for a

semicircular weir or a partly filled circular pipe is given

as follows:

3/ 5R A (17)

Substituting Equation (17) into Equation (4) yields:

2 71

3 52
1

Q i A
n

 (18a)

Because the hydraulic gradient i and the manning

coefficient n and parameter σ are all constants,

independent with the cross-sectional area of the water

flow, A, they can be expressed as an integrated coefficient

and Equation (18a) becomes:

7

5Q A (18b)

The exponential index of 7/5 is indeed between 3/2

and 5/4, as predicted in the early sections, being between

3/2 for a rectangular weir and 5/4 for a triangular weir,

respectively.

3 Validation and discussion

To validate the approach presented above, data from

two sources, computed and measured, are used to check

the derived equations.

3.1 Verification with the discharge function for

semi-circular channel

Weirs are described as sharp-crest weirs or thin-plate

weirs when the upper edge over which the flows, i.e. the

crests, are very narrow. For a circular sharp-crested

weir, the discharge is given by Armando[9] as follows:

5

2Q d (19)

Where: d is the diameter, in dm and Q is the discharge

rate, in dm3; φ is a function of the water level; and µ is

calculated from Equation (20), in which, h is the water

head, the value of h/d is given in Table 2:

0.555 0.041
110

d h

h d
    (20)

Limits of the equation are that the approach velocity

must below V2/2g≈0; a＞r, with a minimum of 0.10 m;

b＞r; h/d≥0.10; h≥0.03 m; the water downstream must
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be at least 0.05 m below the crest. Figure 4 illustrates

these variables.

Table 2 Data sets of parameters used in Equations (19) and

(20)

h/d φ h/d φ

0.05 0.0272 0.3 0.9119

0.1 0.1072 0.4 1.5713

0.2 0.4173 0.5 2.3734

Figure 4 Diagram of a circular shape-crested weir

It is of great interest to verify the relationship between

discharges calculated with the two different formulae, i.e.,

Equation (18b) and Equation (19). For simplification, a

theoretical example for a circular weir assumes that the

diameter of the circular transect, d, is 1 m and the

discharge, Q1, is then determined for various water levels

by using Equation (19). Likewise, the discharge, Q2,

under a wetted area, A, is determined from Equation (18b)

taking the theoretical value of 1 for the coefficient, α.

The calculated values for Q1 and Q2 are shown in Table 3.

Table 3 Discharge rates computed with different models, i.e.,

Equations (18b) and (19)

h/d
φ

/radians
d

/dm
µ

Q1

/m3
·s-1

A

/m2

Q2

/m3
·s-1

0 0 1 0 0 0 0

0.025 0.0136 1 0.9197 0.0110 0.0052 0.0007

0.050 0.0272 1 0.7389 0.0128 0.0147 0.0028

0.075 0.0672 1 0.6793 0.0256 0.0268 0.0065

0.10 0.1072 1 0.6500 0.0365 0.0409 0.0117

0.15 0.2622 1 0.6218 0.0799 0.0739 0.0267

0.20 0.4173 1 0.6087 0.1206 0.1118 0.0476

0.25 0.6646 1 0.6016 0.1866 0.1535 0.0739

0.30 0.9119 1 0.5976 0.2518 0.1982 0.1054

0.35 1.2416 1 0.5953 0.3395 0.2450 0.1415

0.40 1.5713 1 0.5941 0.4275 0.2934 0.1818

0.45 1.9723 1 0.5937 0.5356 0.3428 0.2258

0.50 2.3734 1 0.5937 0.6445 0.3927 0.2727

The Q1 and Q2 values from Table 3 were compared in

Figure 5. There was a very good, linear correlation

between Q1 and Q2 values, with a determination

coefficient, R2, being 0.9992. This indicates that the

derived formula for discharge, expressed as a function of

the wetted area, A, and the exponential parameter, are

both reasonable and practicable.

Figure 5 Comparison of flow rates computed by the traditional

discharge formula and the proposed model

In practice, circular weirs have various values of α,

dependent on their construction material and size, which

need to be determined by calibration using Equation

(18b). The value of α does not affect the fact that a

linear relationship exists between the discharges

calculated using the two Equations (18b) and (19); it just

affects the value of the slope parameter, determined as

0.42 in our theoretical example (Figure 5).

3.2 Verification with measured data

The mechanic-electronic sensor proposed by Qu et

al.[10] estimates discharge rates by means of sensing the

weight of water in a measuring pipe. The force F, on

the load cell, is determined by the water volume in the

weighing section. The relationship among weight,

volume of water in the measuring pipe and the force on

the load cell from the water in the measuring pipe is

determined by F∝W∝V. Based on the relationship

between the discharge and the wetted area in Equation

(18b), the relationship between the sensed weights of the

water, F, and the discharge, Q, is given as follows:

7

5
1( )Q f F F  (21)

Where: α1 is the proportional coefficient. Based on

hydraulic theory and mathematical approximation, the
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exponential index should be equal to χin Equation (8),

7/5. The derivation of Equation (21) is given in detail

by Qu et al[10]. In order to validate Equation (18b),

experiments were conducted to verify Equation (21),

which was based on Equation (18b). If Equation (21) is

reasonable, Equation (18b) is verified, albeit indirectly.

To calibrate the model, a flume, equipped with a load

cell attached to a data logger, was used in which the

inflow of tap water, and hence the discharge rate, is

regulated by a manually operated valve. The discharge

was measured for randomly selected rates ranging

between 0 and 3,000 mL/s. A series of discharges were

measured by collecting the water flow in containers, over

timed intervals. For each valve setting used to control

the water inflow rate, five runoff samples were taken to

determine the mean discharge. The data logger recorded

the load cell’s outputs for each set of discharges.

Outputs, F from the load cell were used following

Equation (21) to calculate discharges. In order to

compare with previous study, other two exponential index,

χ, values, i.e., 3/2 for rectangular and 5/4 for triangular

channel were also used instead of 7/5 in Equation (21) to

compute discharge, respectively. The measured

discharge values of the clear water were then regressed

against these calculated values (Figure 6). The

determination coefficients for the three different χvalues

(3/2, 7/5, and 5/4) were 0.9802, 0.9851 and 0.9830,

respectively.

Figure 6 Experimental data and fitted curves, calculated using

three different exponential indices

The regressed results (Figure 6) indicated that the

sensor’s output, F was very well correlated with the

measured discharge (R2 = 0.9851), which indicates that

Equation (21) is rational. Further, it is proven that

Equation (18b) should theoretically be a good function by

which to quantify the relationship between discharge and

the wetted area.

Laboratory experiments were also used to verify the

relationships established above. The constant rainfall

event used an intensity of 75 mm/h and lasted for ten

minutes. The variable rainfall events involved the

gradual, step-by-step increases in rainfall intensities from

30 to 70 mm/h in increments of 10 mm/h and three

minutes periods. The data collected from that study

were manipulated with different exponential index.

The laboratory model of the watershed was shown in

Figure 7. The runoff discharges were measured with the

flumes and were also manually-measured

Figure 7 Aerial view of the laboratory watershed

The double-mass curve method was used to check the

differences between the manually measured and the

flume-measured data sets. The double-mass curves are

shown in Figures (8a) and (8b) for the rainfall events.

The two groups of data agreed well for both rainfall

events, with a regressive coefficient of 0.9939 and a

determination coefficient of 0.9997 for the rainfall event

of constant intensity and a regressive coefficient of

1.0482 and a determination coefficient of 0.9998 for the

rainfall event of variable intensities. The data sets

indicated that there was no significant difference between

the manually measured and computed sensor data sets.
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Figure 8 Double-mass curves of accumulated sensor-data,

computed flow rates vs. manually measured flow rates

4 Discussion

From the theoretical point of view, the complex

cross-sectional geometry complicates the analysis of

circular weir. In the present approach, the problem is

dramatically simplified by using a novel formulation and

it makes the calibration much more convenient. Wahl et

al.[11] and Uyumaz et al.[12] studied the flow in circular

channels. The formulas obtained from their study were

complex to determine the parameters because of the cross

sectional geometry. In this study, the main focus is on

the flow in a semi-circular shaped weir, which is also

applicable to the situation when the flow is less than half

full in a circular weir.

The model for semi-circular channels in this paper

was valid when the weir length is not very long so that it

is reasonable to use the averaged depth of the water flow

in the flume. For practical application, calibration work is

needed for a specific design of the weir. The precise of

the measurement depends on the size of the design and in

situ conditions, such as roughness, materials and

temperature. This model should be helpful to the

development of automatic measurement device.

In the previous studies, different χ values in Equation

(18b) were suggested for triangular weir. Compared with

the result by Qu et al.[10], the exponential index, χ, in

Equation (8b) differs little from 3/2 to 7/5. This change

makes improved measurements. Though 3/2 was a very

close estimation and the improvement of regression is not

very dramatic, the newly suggested index bears strong

hydraulic and mathematical meanings.

5 Conclusions

A new method for the determination of discharge

from the wetted area in semi-circular channels or circular

pipes partly filled with water under no pressure was

outlined. Theoretical and mathematical approximation

procedures were applied to determine the formula

parameters. The calculated discharges, using the

proposed relationship, showed good agreement with data

sets derived from the traditional formula and experiments.

These results suggest that the mathematical models

and the procedures used for the determination of water

discharge were rational. The model can also be applied

to the problem of calculating the inflow of a fluid through

an open channel or short pipe.
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Notation

Notation Explanations Units

Q discharge rate m3∙s-1

A cross-sectional area m2

I hydraulic gradient m∙m-1

C Chezy coefficient m1/2∙s-1

R hydraulic radius m

n Manning coefficient dimensionless

σ1 regression proportional coefficient of Eq.(5a) m-1/2

σ2 regression proportional coefficient of Eq.(5b) m1/4

σ regression proportional coefficient of Eq.(17) m-1/5

d diameter of circular channel m

φ central angle of the wetted area radian

χ regression proportional coefficient of Eq.(8) dimensionless

K regression proportional coefficient of Eq.(15) dimensionless

µ parameter of Eq.(19) dimensionless

Φ parameter of Eq.(19) m1/2s-1

h water level m

α1 proportional coefficient m3∙kg7/5∙s-1

F output of load-cell kg
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