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Feature extraction method of hyperspectral scattering images for 
prediction of total viable count in pork meat 
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Abstract: This study aimed to investigate the capabilities of hyperspectral scattering imaging in tandem with Gaussian function, 
Exponential function and Lorentzian function for rapid and nondestructive determination of total viable count (TVC) in pork 
meat.  Two batches of fresh pork meat was purchased from a local market and stored at 10°C for 1-9 d.  Totally 60 samples 
were used, and several samples were taken out randomly for hyperspectral scattering imaging and conventional microbiological 
tests on each day of the experiments.  The functions of Gaussian, Exponential and Lorentzian were employed to model the 
hyperspectral scattering profiles of pork meat, and good fitting results were obtained by all three functions between 455 nm and 
1 000 nm.  The Lorentzian function performed best for fitting the hyperspectral scattering profiles of pork meat compared with 
other functions.  Both principal component regression (PCR) and partial least squares regression (PLSR) methods were 
performed to establish the prediction models.  Among all the developed models, the models developed using parameters CE 
(scattering width parameter of Exponential function) and CL (scattering width parameter of Lorentzian function) by PLSR 
method gave superior results for predicting pork meat TVC, with RV and RMSEV of 0.92, 0.59 log CFU/g, and 0.91,      
0.61 log CFU/g, respectively.  In addition, based on the improved hyperspectral scattering system, parameter c which 
represented the scattering widths in all three functions gave more accurate prediction results, regardless of the modeling 
methods (PCR or PLSR).  The obtained results demonstrated that hyperspectral scattering imaging combined with the 
presented data analysis algorithm can be a powerful tool for evaluating the microbial safety of meat in the future. 
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1  Introduction  

Pork meat is a commercially important and widely 
consumed muscle food in the world; therefore, the 
assurance of its safety is of utmost importance.  Sofos[1] 
reported microbial hazard to be one of the major 
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challenges to meat safety in the 21st century.  The 
microbiological quality of meat mainly depends on the 
physiological status of the animal at slaughter, the spread 
of contamination during slaughter and processing, the 
temperature and other conditions of storage and 
distribution[2].  Total viable count (TVC) of bacteria is 
an important microbiological indicator for the sanitary 
quality and safety evaluation of meat.  It is a quantitative 
sanitary standard to identify the process conditions and 
meat contamination[3-4].  Moreover, TVC can also be a 
useful indicator to predict the shelf life of meat and 
distinguish spoilage[5].  However, the existing methods 
for detection of bacteria in meat are mainly based on plate 
culturing, ATP bioluminescence, enzyme-linked 
immunosorbent assay (ELISA), polymerase chain 
reaction (PCR), etc[6-8].  An obvious drawback with the 
common plate culturing method is the long detection time 
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required for colony formation[9].  Other newly emerging 
techniques may have successfully shortened the detection 
time; however, they still could not meet the requirements 
of meat industries for real-time and in/on-line detection of 
bacteria, because of them being destructive to samples.  

Among current emerging technologies, optic-based 
methods were reported to have the greatest potential for 
on-line application[10,11].  Hyperspectral imaging 
technique is a new rapidly growing technique that 
integrates spectroscopic and imaging techniques together 
for providing both spectral and spatial information of the 
object simultaneously.  Recently, considerable studies 
have been reported on evaluation of food quality and 
safety attributes using hyperspectral imaging 
technique[12-28].  In the area of hyperspectral imaging, 
hyperspectral scattering imaging can be considered to be 
one branch, as it is based on the light backscattering 
imaging (LBI) system which could cover both light 
scattering and absorption information within samples.  
Light scattering is commonly reported to be due to the 
physical characteristics (e.g., particle size, cellular 
structure and density) of the tissue, while light absorption 
is related to the chemical constituents.  During the 
process of meat spoilage, not only the bacterial loads and 
chemical ingredients undergo changes, but also the 
microstructure of meat can be different.  Therefore, it is 
reasonable to apply hyperspectral scattering imaging to 
quantify meat TVC changes during storage, as it can 
cover both the differences in light scattering and 
absorbance. 

However, a critical problem encountered in the 
application of hyperspectral scattering imaging is to 
analyze and model hyperspectral scattering profiles.  
Previously, Peng and Lu[29] exploited Lorentzian function, 
Gaussian function and Exponential function to model the 
multispectral scattering profiles of apple fruits, and 
concluded that Lorentzian function could yield the best 
fitting results to the scattering profiles of apple fruits.  
Subsequently, Peng et al.[30] continued to apply different 
forms of Lorentzian function and Gompertz function to 
analyze the characteristics of multispectral scattering 
profiles of apple fruits, and their results showed that 
Gompertz function performed better for predicting apple 

quality attributes than Lorentzian function, although with 
a little bit lower fitting coefficients.  Recently, Zhu et 
al.[31] reported using a generalized Gaussian function 
coupled with mean reflectance (GGD-mean) to describe 
the hyperspectral scattering profiles of ‘Golden 
Delicious’ apples in the spectral region of 500-1 000 nm, 
and indicated that GGD-mean model could yield better 
results for predicting fruits firmness and SSC than 
Lorentzian function.  In the field of evaluating meat 
quality and safety by hyperspectral scattering imaging, 
studies have been reported on exploiting Lorentzian 
function and Gompertz function to analyze the scattering 
profiles of beef and pork meat[18,22,24-27].  However, to 
our knowledge, the capabilities of Gaussian function and 
Exponential function in modeling the hyperspectral 
scattering profiles of meat are still unknown now.  
Therefore, the objectives of the present study are: (1) to 
explore the capabilities of Gaussian function and 
Exponential function in modeling the hyperspectral 
scattering profiles of pork meat; (2) to investigate the 
effectiveness of the extracted Gaussian and Exponential 
parameters in predicting pork meat TVC, and also 
compare their modeling results with those by Lorentzian 
parameters; (3) to test the capabilities of the improved 
hyperspectral scattering imaging system in detection of 
the bacterial contamination of pork meat. 

2  Materials and methods 

2.1  Sample preparation 
Two batches of fresh pork meat (Longissimus dorsi 

muscle) were purchased from a local supermarket on two 
different days and immediately transported to the lab 
under refrigeration.  Totally 60 pork meat samples were 
prepared by trimming into the size of 9 cm×5 cm×2.5 cm 
(length × width × thickness) uniformly, and then 
tray-packaged with polyethylene (PE) film covering 
above.  All samples were placed orderly and stored at 
10°C for 1-9 d.  Several samples were taken out 
randomly on each day of the experiment for hyperspectral 
imaging and reference microbiological tests. 
2.2  Hyperspectral scattering imaging system 

A laboratory VIS/NIR hyperspectral scattering 
imaging system in the spectral range of 400-1 100 nm 



August, 2015  Tao F F, et al.  Feature extraction of hyperspectral images for prediction of viable count in pork meat  Vol. 8 No.4  97 

was used.  Compared to our previous study[25], this 
system was enhanced by improving the charge coupled 
device (CCD) lens to an adjusted one that allowing over 
80% light transmittance in the covered near-infrared 
region. 

The hyperspectral imaging system mainly consisted 
of a high-performance back-illuminated 12-bit charge 
coupled device (CCD) camera (Sensicam QE, PCO AG, 
Kelheim, Germany), an imaging spectrograph (ImSpector 
V10E, Spectral Imaging Ltd., Oulu, Finland), an 
illumination unit (Oriel Instruments, Stratford, USA) 
equipped with optical fiber, a laser displacement sensor 
(GV-H45, Keyence Corp., Shanghai, China), and a 
computer supported with a data acquisition and control 
software (Camera control Kit V2.19, the Cooke Corp., 
Germany).  The optical fiber was used to form the point 
light for use in the scattering imaging system, with a 
diameter of 5 mm.  The system worked in a line 
scanning mode, and all scans were obtained at a position 
of 3 mm off the incident light center to avoid the signal 
saturation on CCD detector.  The resolution of the 
imaging system was 2.8 nm spectrally with a 0.74 nm 
interval, and spatially less than 9 μm.  In addition, in 
order to minimize the effect of ambient light, the imaging 
system was enclosed in a shield box. 
2.3  Acquisition of hyperspectral images 

In order to eliminate the dark current effect of the 
imaging system, the dark image was first obtained by 
covering the camera lens before imaging for each sample.  
Sample surface with no visible fat or connective tissue 
was selected for imaging.  For each sample, four lines in 
the middle of the sample were selected for imaging, and 
the gap between two adjacent lines was around 0.5 cm if 
no visible fat or connective tissue existed there.  The gap 
of 0.5 cm was not necessary, if visible fat or connective 
tissue existed.  For each imaging, four images were 
averaged to one automatically by setting the camera 
working parameter thus, 16 hyperspectral images were 
acquired for each sample actually.  Before each imaging, 
the object distance was first measured by the laser 
displacement sensor, and then kept to the set distance by 
adjusting the vertical translation stage. 

The original hyperspectral images were of 1 376×    

1 040 (spatial × spectral) pixels, and 2×2 binning was 
performed to improve the signal-to-noise ratio (SNR).  
Therefore, the resulting images were of 688×520 (spatial 
× spectral) pixels, which were saved in TIFF format for 
further analysis.  
2.4  Microbiological analyses 

After acquisitions of hyperspectral images, the 
microbiological tests were performed to determine the 
reference TVCs in pork meat according to GB/T 
4789.2-2010.  First, 25 g samples were transferred 
aseptically into 225 mL sterilized 0.85% saline solution, 
and homogenized (10 000 r/min) in a homogenizer (JT-C, 
Luohe Jintian Test Equipment Institute, Luohe, China) 
for 60 s at room temperature.  Then, 10-fold serial 
dilutions were prepared with 0.85% saline solution and 
duplicate 1 mL samples of 2 or 3 appropriate dilutions 
were mixed with the liquid Plate Count Agar (Beijing 
Aoboxing Bio-tech Co. Ltd, Beijing, China).  The agar 
plates were left on the bench for at least 15 min to 
solidify and were then incubated at 37°C for 48 ± 2 h.  
The number of total bacteria in each sample was 
determined by counting the number of colony forming 
units (CFUs).  The data of pork meat TVCs were 
calculated according to GB 4789. 2-2010.  Finally, the 
TVC data were log-transformed, and expressed in     
log CFU/g for further analysis. 
2.5  Data analysis method 

Figure 1 presents the data processing procedures 
employed in this work, and the detailed data analysis 
method for each step is described in the following 
sections. 

 
Figure 1  Schematic diagram of data processing routines 

 

2.5.1  Spatially-resolving of hyperspectral image 
Hyperspectral image contains three-dimensional (3-D)  
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information of the object, and therefore it should first be 
unfolded and restructured into a 2-D matrix in order to 
apply the chemometric techniques.  In this work, the 
spatially-resolving method was employed to analyze the 
images[18,22,24].  The spatially-resolved hyperspectral 
image, essentially are the scattering profiles of the object 
at contiguous wavelengths.  In this work, three functions 
including Gaussian function, Exponential function and 
Lorentzian function were applied to extract the scattering 
characteristics of pork meat. 

Gaussian function, Exponential function and 
Lorentzian function are shown in Equations (1)-(3), 
respectively. 
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where, R is the light intensity in CCD Count; z is the 
distance from the detected position to the light incident 
center in pixel; aG, aE, and aL are the asymptotic values of 
light intensity in Gaussian, Exponential and Lorentzian 
functions, respectively; bG, bE and bL are the peak values 
of light intensity in Gaussian, Exponential and Lorentzian 
functions, respectively; cG is the scattering width at 
0.61×bG in Gaussian function; cE is the scattering width at 
0.37×bE in Exponential function; and cL is the scattering 
width at 0.5×bL in Lorentzian function. 

All the curve-fitting procedures were performed in 
Matlab 7.0 software (Mathworks, Natick, USA) based on 
the least-squares principle, and the fitting results were 
evaluated by the correlation coefficients (R) between the 
original scattering profiles and the fitted function curves.  
The higher R is, the more accurate the fitting is.  By the 
procedure of curve fitting, the Gaussian, Exponential and 
Lorentzian function parameters can be obtained, 
respectively. 
2.5.2  Model calibration and validation 

Principal component analysis (PCA) and partial least  
squares (PLS) are two full-spectrum and factor analysis 
methods based on multivariate calibration that have 

received considerable attentions in the chemometric 
literatures[32-35].  Using the extracted function parameters, 
both principal component regression (PCR) and partial 
least squares regression (PLSR) methods were employed 
in this work to establish the quantitative models for 
prediction of pork meat TVC. 

PCA is a well-known technique for reducing a 

multidimensional data set to its most dominant features, 

and expresses the total variation in the data set in only a 

few principal components (PCs).  These PCs are 

orthogonal, so that the data set presented on these axes 

are uncorrelated with each other[36].  In PCA, the 

independent data matrix (X, function parameter in this 

case) is decomposed into two matrices, T and P, such that 

X = TPT.  Where T is the “score” matrix, which 

represents the position of the sample in the new 

coordinate system (PCs coordinate system); P is the 

“loading” matrix, whose columns describe how the new 

axes, that is the PCs, are built from the old axes.  

Therefore, each spectrum will have its own unique set of 

scores, and a spectrum can be represented by its PCA 

scores in the factor space instead of intensities in the 

wavelength space[37]. 

In PLS, the decomposition is performed in a slightly 

different fashion.  Instead of first decomposing the 

spectral matrix into a set of scores and loadings, and 

regress for them against the dependent variable (Y, 

reference TVC value in this case) as a separate step, PLS 

actually uses the information in Y during the 

decomposition process.  The main idea of PLS is to get 

as much information in Y as possible into the first few 

loading vectors.  The first latent variable (LV) conveys 

the largest amount of information, followed by the second 

LV and so forth. 

To evaluate the capabilities of the established models 

in predicting pork meat TVC, the statistical criteria, 

including correlation coefficient of the calibration set 

(RC), root mean squared error of the calibration set 

(RMSEC), correlation coefficient of the validation set (RV) 

and root mean squared error of the validation set 

(RMSEV) were computed.  The higher Rv and the lower 

RMSEV is, the better predictability the model has. 
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3  Results and discussion 

3.1  Results of microbiological analysis 
The statistical data of pork meat TVC of all 60 

samples were calculated and the results were shown in 
Table 1.  From Table 1, it could be seen that the 
minimum TVC of all tested samples was 4.38 log CFU/g 
and the maximum value was 9.29 log CFU/g, with the 
mean value and standard deviation (SD) of 6.98 log 
CFU/g and 1.45 log CFU/g, respectively.  These 
statistical data indicated that a wide range of meat TVC 
values was covered, and it could represent the complete 
process of microbial spoilage of pork meat. 

In addition, as the samples were divided into 
calibration and validation sets in the following section for 
model development and evaluation, the statistical data 
was also calculated for each of them and the results were 
shown in Table 1 together. 

 

Table 1  Descriptive statistics of reference pork meat TVCs  
(in log CFU/g) 

Data set Sample number Minimum Maximum Mean SD 

Total set 60 4.38 9.29 6.98 1.45

Calibration set 45 4.39 9.29 6.97 1.45

Validation set 15 4.38 8.99 7.03 1.45
 

3.2  Analysis of hyperspectral data 
3.2.1  Spatially-resolving of hyperspectral image 

Figure 2 shows the hyperspectral scattering image of 
pork meat in 3-D format, and the three axes represent the 
information of light intensity, wavelength and scattering 
distance, respectively.  The spectral range is between 
400 nm to 1 100 nm, and the spatial distance is from  
-30 mm to 30 mm with the incident light center at 0 mm.  

By resolving hyperspectral image spatially, the 
scattering profiles of pork meat at continuous 
wavelengths were obtained.  The scattering profiles of 
pork meat at varying wavelengths were observed to be 
conspicuously similar in shape but with different light 
intensities.  Therefore, it is reasonable to employ 
appropriate equations to analyze such light scattering 
pattern, and Gaussian, Exponential and Lorentzian 
functions were applied for this purpose.  As an example, 
the scattering profiles of pork meat at the wavelengths of 
500 nm, 600 nm, and 800 nm are shown in Figure 3.  

 
Figure 2  3-D hyperspectral image of pork meat 

 
Figure 3  Scattering profiles at different wavelengths 

 

3.2.2  Results of curve fitting and function parameters 
Figure 4 shows the fitting coefficients of Gaussian, 

Exponential, and Lorentzian functions to the scattering 
profiles of pork meat in the selected spectral range.  
Overall, the fitting results by the three functions were 
good, with the fitting coefficients around 0.99 in the 
spectral range of 455-1 000 nm.  In comparison, 
Lorentzian function fitted the scattering profiles of pork 
meat more accurately than Gaussian and Exponential 
functions, with all the fitting coefficients higher than 0.99.  
The result was in accordance with the study reported by 
Peng and Lu[29], in which they indicated that Lorentzian 
function was better than Gaussian and Exponential 
functions in fitting the multispectral scattering profiles of 
apple fruits. 

Furthermore, in order to clearly show the comparison 
of the fitting results by Gaussian, Exponential and 
Lorentzian functions, the fitting coefficients of one 
scanning line were selected randomly and plotted in 
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Figure 5.  From Figure 5, it could be seen that before 
554 nm, the fitting coefficients by Gaussian function 
were similar to those by Lorentzian function, while 
inferior to Lorentzian function after 554 nm.  
Meanwhile, Gaussian function could fit the scattering 
profiles of pork meat more accurately than Exponential 

function between 455 nm and 600 nm, while inferior to 
Exponential function after 600 nm.  In Peng and Lu’s 
study[29] on modeling the multispectral scattering profiles 
of apple fruits, the fitting coefficients were in the 
descending sequence of Lorentzian function, Exponential 
function and Gaussian function. 

 
a. Gaussian function                           b. Exponential function                          c. Lorentzian function 

 

Figure 4  Fitting coefficients by different functions: 
 

 
Figure 5  Fitting coefficients by three functions of one scanning 

line 
 

Good fitting results indicate effective interpretation to 
the scattering profiles.  Therefore, the derived function 

parameters could sufficiently represent the information 
within pork meat.  Figures 6, 7 and 8 show the extracted 
Gaussian parameters, Exponential parameters, and 
Lorentzian parameters, respectively.  It can be observed 
from Figures 6, 7 and 8 that the spectral patterns of the 
function parameters which represent the same meanings 
in the three functions are similar, while just with different 
magnitudes.  In addition, it should also be noted that the 
spectral pattern of parameter aG is in a unique type of 
similarity to parameters aE and aL, approximately being 
symmetric to parameters aE and aL with the horizontal 
axis.  

 

 
a. Parameter aG  b. Parameter bG  c. Parameter cG 

 

Figure 6  Gaussian parameters of 60 pork meat samples 



August, 2015  Tao F F, et al.  Feature extraction of hyperspectral images for prediction of viable count in pork meat  Vol. 8 No.4  101 

 
a. Parameter aE  b. Parameter bE  c. Parameter cE 

 

Figure 7  Exponential parameters of 60 pork meat samples 

 
a. Parameter aL  b. Parameter bL  c. Parameter cL 

 

Figure 8  Lorentzian parameters of 60 pork meat samples 
 

In detail, for parameters aG, aE and aL, the spectral 
peaks and valleys were observed at the wavelengths of 
500 nm, 551 nm, 635 nm and 680 nm, while they 
appeared around 510 nm, 546 nm, 571 nm and 663 nm 
for parameters bG, bE and bL (Figures 6, 7 and 8).  As to 
parameters cG, cE and cL, it can be seen from their spectra 
that a wide spectral peak appeared after 600 nm 
approximately, except for the peaks and valleys around 
494, 550 and 576 nm.  Bowen[38] reported that the 
phenomenon of myoglobin oxidation would decrease the 
absorbance value at 555 nm, while increase around the 
wavelengths of 542 nm and 578 nm.  These 
characteristic wavelengths reported are near the 
wavelengths mentioned above that showing peaks or 
valleys in the parameter spectra, which indicates that the 
phenomenon of myoglobin oxidation underwent during 
pork meat storage. 
3.2.3  Correlation analysis between function parameters 
and pork meat TVC  

In order to study the linear relationships between the  

extracted Gaussian, Exponential, Lorentzian parameters 
and pork meat TVC, the Pearson correlation coefficients 
(R) were calculated between 455 nm and 1 000 nm.  
Figure 9 shows the correlation coefficients between each 
function parameter and pork meat TVC, respectively.  
For parameters aE and aL, the correlation patterns with 
pork meat TVC were similar, while different with 
parameter aG, which might result from their different 
parameter patterns (Figures 6a, 7a and 8a).  The 
correlation patterns for parameters b and c were pretty 
similar for all the three functions, especially for parameters 
bG, bE and bL, which were almost coincident in the selected 
spectral range.  For parameters cG, cE and cL, there was 
no obvious correlation difference with pork meat TVC 
before 596 nm, but the difference became notable after 
596 nm, in the descending sequence of cG, cE and cL. 

In detail, the correlation coefficients of parameters aG, 
aE and aL ranged from -0.75 to 0.62, while aE and aL 
correlating better to pork meat TVC than parameter aG.  
Compared to parameter a, the correlation coefficients of 
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parameter b showed a little narrow range with the data 
varying from -0.56 to 0.44.  The coefficients for 

parameter c were almost positive in the selected spectral 
range, with the highest coefficient of 0.73. 

 
a. Parameter a  b. Parameter b  c. Parameter c 

 

Figure 9  Correlation coefficients between pork meat TVC and function parameters 
 

3.3  Modeling results for prediction of pork meat 
TVC 

As mentioned above, both PCR and PLSR methods 
were applied to establish the prediction models.  First, 
the prediction residual error sum of squares (PRESS) and 
standard error of cross validation (SECV) were calculated 
to determine the optimum PCs and LVs for PCR and 
PLSR methods, respectively.  The optimum number of 
PCs is the one that yields the minimum PRESS, and 
correspondingly the optimum number of LVs is the one 
that yields the minimum SECV.  Using parameter aG, the 
optimum number of PCs and LVs were determined to be 
11 and 7.  Then, based on the optimum PCs and LVs 
determined, the PCR and PLSR models were calibrated 
and validated.  The validation results using parameter  
aG were achieved with RV and RMSEV of 0.88,     
0.72 log CFU/g, and 0.83, 0.84 log CFU/g by PCR and 
PLSR methods, respectively.  The results indicated that 
using parameter aG, PCR method gave more accurate 
prediction result than PLSR method. 

Similarly by performing the leave-one out cross 
validation method, the optimum PCs and LVs using 
parameters bG and cG were determined. Table 2 shows the 
PCR and PLSR modeling results using parameters bG and 
cG.  Table 2 shows that among all modeling results  
using Gaussian parameters by PCR and PLSR methods, 
the best prediction result was achieved using parameter 
cG by PCR method, with Rv and RMSEV of 0.89 and 
0.68 log CFU/g.  Additionally, it could also be observed 
from Table 2 that PCR method performed better than 
PLSR method, whichever Gaussian parameter was used. 

Table 3 shows the modeling results using Exponential 
parameters, by PCR and PLSR method, respectively.  
From Table 3, it could be seen that among all Exponential 
parameters, the best prediction result was achieved using 
parameter cE by PLSR method, with Rv and RMSEV of 
0.92, 0.59 log CFU/g.  Additionally, Table 3 also shows 
that using Exponential parameters, PLSR method 
performed better than PCR method except for parameter 
bE, which was different from the modeling results using 
Gaussian parameters. 

Table 4 shows the modeling results using Lorentzian 
parameters, by PCR and PLSR method, respectively.  
Among the three Lorentzian parameters, the best 
prediction result was achieved using parameter cL by 
PLSR method, with Rv and RMSEV of 0.91, 0.61 log 
CFU/g.  Although the Rv using parameter aL by PCR 
method reached 0.92, the RMSEV (0.73 log CFU/g) was 
bigger than that obtained using cL by PLSR method.  
Moreover, no significant differences of the modeling 
results by PCR and PLSR methods were observed from 
Table 4. 

Overall, from all the modeling results shown in 
Tables 2, 3 and 4, we observed that parameter c which 
represented the scattering width in all three functions 
gave more accurate prediction results for pork meat TVC 
than the other two parameters, whether it was based on 
PCR or PLSR method.  Additionally, by comparing the 
prediction results using the same parameters from 
different functions, it could be concluded that Lorentzian 
parameters were superior to Gaussian parameters and 
Exponential parameters on prediction of pork meat TVC. 
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Table 2  PCR and PLSR modeling results using Gaussian parameters 

PCR method PLSR method 
Parameter 

Optimum No. of PCs RC RMSEC RV RMSEV Optimum No. of LVs RC RMSEC RV RMSEV

aG 11 0.91 0.61 0.88 0.72 7 0.92 0.58 0.83 0.84 

bG 4 0.85 0.78 0.87 0.76 9 0.92 0.58 0.86 0.87 

cG 6 0.84 0.79 0.89 0.68 13 0.99 0.10 0.85 0.76 

 

Table 3  PCR and PLSR modeling results using Exponential parameters 

PCR method PLSR method 
Parameter 

Optimum No. of PCs RC RMSEC RV RMSEV Optimum No. of LVs RC RMSEC RV RMSEV

aE 2 0.50 1.26 0.48 1.35 11 0.99 0.19 0.76 1.15 

bE 4 0.84 0.79 0.87 0.78 9 0.92 0.58 0.86 0.85 

cE 7 0.85 0.77 0.89 0.67 4 0.84 0.79 0.92 0.59 

 

Table 4  PCR and PLSR modeling results using Lorentzian parameters 

PCR method PLSR method 
Parameter 

Optimum No. of PCs RC RMSEC RV RMSEV Optimum No. of LVs RC RMSEC RV RMSEV

aL 8 0.86 0.73 0.92 0.73 11 0.99 0.16 0.86 0.86 

bL 4 0.84 0.78 0.87 0.76 9 0.92 0.58 0.87 0.85 

cL 8 0.84 0.79 0.89 0.69 5 0.84 0.80 0.91 0.61 
 

The results indicated that parameter cL performed best 
among the three Lorentzian parameters based on PCR or 
PLSR method, which was different from our previous 
study in which parameter bL performed the best[25].  The 
system improvement should be the first important reason 
for the result differences.  Moreover, different modeling 
methods may also lead to different modeling results, as 
stepwise multiple linear regression (SMLR) method was 
employed in our previous study, and PCR and PLSR 
methods were used in this work.  

4  Conclusions 

The study demonstrated that hyperspectral scattering 
imaging in tandem with appropriate chemometric 
methods could be a rapid and nondestructive tool for 
prediction of pork meat TVC.  Gaussian, Exponential 
and Lorentzian functions were applied to model the 
hyperspectral scattering profiles of pork meat, and the 
results indicated that all the employed functions could fit 
the hyperspectral scattering profiles well, with the fitting 
coefficients around 0.99 between 455 and 1 000 nm.  In 
comparison, Lorentzian function performed best in fitting 
the scattering profiles of pork meat. 

Using the extracted function parameters, both PCR 
and PLSR methods were performed to develop the 

quantitative models for prediction of pork meat TVC.  
Among all the established models, the models developed 
using parameters cE and cL by PLSR method gave 
superior results, with Rv and RMSEV of 0.92 and 0.59 
log CFU/g, 0.91 and 0.61 log CFU/g, respectively.  In 
addition, this study showed that based on the improved 
hyperspectral scattering system, parameter c which 
represented the scattering width in all three functions 
gave more accurate results in predicting pork meat TVC 
than the other two function parameters, regardless of the 
modeling method (PCR or PLSR).  Overall, the study 
demonstrated that hyperspectral scattering imaging 
combined with the presented data analysis algorithm 
could be a powerful tool for evaluating the microbial 
safety of meat in the future. 
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