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Abstract: The efficient and precise application of agricultural materials such as fertilizer or herbicide can be greatly facilitated 

by autonomous operation.  This is especially important under difficult conditions at remote sites.  The purpose of this work is 
to develop an accurate nonlinear controller using a direct Lyapunov approach to ensure stability of an unmanned hovercraft 

prototype used for the execution of these agricultural tasks.  Such a craft constitutes an underactuated system which has fewer 
actuators than degrees of freedom.  The proposed closed loop system is simulated to demonstrate that a control law can 

stabilize both the actuated and unactuated degrees of freedom of the hovercraft.  It is shown that the position and orientation of 
the hovercraft achieve high dynamic and steady performance. 
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1  Introduction 

The use of unmanned vehicles (UVs) for precision 
agriculture is a field that continuously spurs interest due 
to the assistance that UVs could provide in reducing the 
cost and assuring the safety of many agricultural 
procedures.  Given this motivation, a new vehicle is 
needed to support agriculture, specifically in applications 
where operator safety is a significant requirement.  
These applications involve weed control, crop preparation, 
and efficient use of fertilizers.  All of these applications 
require extensive production capabilities, capabilities that 
might be especially costly in countries where labor 
shortages are currently an issue[1].  

The vehicle selection must be made considering the  
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environmental risk, the recommended pesticide dose, and 
the risk of operator exposure.  These requirements can 
be met through the use of an autonomous hovercraft.  
By using an autonomous hovercraft, the dispersion of the 
pesticide and fertilizer will have higher effectiveness and 
will be less costly compared to an aerial vehicle due to 
the surface proximity on which the vehicles act[2].   

A new technology of spraying pesticides and 
delivering fertilizer which is done in a way that does not 
disturb the crops will be tested using a hovercraft 
prototype under agricultural field-conditions[3].  The 
goal of this effort is to demonstrate the beneficial nature 
of this approach as a solution to human and crops 
protection.  This paper deals with the first step, to 
develop means to control the hovercraft so that it is a 
stable system.  Successful completion of the first step 
would allow a second step consisting of the construction 
of a prototype to provide a platform for structured work 
involving agricultural applications and tests to confirm 
the results of the first step.  Figure 1 shows the 
hovercraft prototype design views and Figure 2 shows the 
unmanned hovercraft prototype spraying. 
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1. Arduino  2. GY-521  3. Battery  4. Skirt motor case  5. Skirt motor  6. 
Skirt motor switch  7. Propeller motor switch  8. Propeller motor case  9. 

Skirt  10. Hovercraft assembly  11. Propeller motor grid  12. Propeller motor 

Figure 1  Hovercraft prototype design views 

 
Figure 2  Unmanned hovercraft prototype  

 

The hovercraft consists of fans and a cushion where 
the air pressure inside the cushion enables it to float and 
move smoothly on any surface.  The lift fan is capable 
of operating for long periods of time and provides the 
internal cushion pressure.  The pressure inside the 
cushion needs to be maintained at all times in different 
climates to ensure the hovercraft is free to move.  
Furthermore, the unmanned hovercraft has lower friction 
opposing its movement, where the skirt contacts the wet 
or dry surface, compared to other land or water forms of 
transportation. This UV can also be propelled over 
different types of crops without damaging them whereas 
other vehicles cannot[4].  Some disadvantages when 
using a hovercraft are that they require a lot of air for lift, 
are loud due to fan or propeller rotation during the 
operation, and have power requirements for a particular 
agricultural application.  Because there is no human 
operator, the audible noise disadvantage does not present 
an obstacle.  In addition, the hovercraft has the potential  

to damage its skirt or cushion. 
The main challenge when designing controls for 

underactuated systems is the non-linearity of the 
equations of motion that govern the dynamics together 
with the manipulation of those equations so that a 
controller can be found.  The application of any method 
is, in general, a rather difficult task because developing 
the needed controller involves solving ordinary and 
partial differential equations.  Generally, control 
strategies for the stabilization of underactuated systems 
can be found in the literature.  Some of the previous 
studies conducted by several researchers on stabilizing 
the underactuated, unmanned hovercraft system are 
mentioned and analyzed below.  

In the hovercraft modeled by Marconett[5], the design 
consists of one powerful hovering motor and four 
horizontally mounted propulsion motors. A 
microcontroller acquires input data from various sensors 
and provided output signals to vary the speed of each 
motor and performs the necessary stabilization using a 
proportional-integral-derivative (PID) controller. 

The nonholonomic (nonintegrable constraints), 
autonomous underactuated underwater vehicle (AUV) 
modeled in literature [6] consists of a control that 
regulates the dynamic model in the horizontal plane with 
a desired orientation (roll, pitch, and yaw) using a 
Lyapunov-based, adaptive formulation.  A 
discontinuous, adaptive state feedback controller is 
derived that yields convergence of the trajectories of the 
closed loop system in the presence of parametric 
modeling uncertainty.  

In the work of Fantoni et al.[7,8], two different control 
strategies were designed for stabilizing the surge (linear), 
sway (linear), and angular velocities of the hovercraft 
frame.  The authors used a Lyapunov formulation with 
the surge force and the angular torque as outputs of the 
controller.  In addition, the mathematical model of the 
hovercraft system was derived based on Newton’s second 
law and an Euler-Lagrange formulation.  

Chaos et al.[9] used a cascade control problem (two 
loops) to control a vehicle with very simple propeller 
speed regulation that produced only a discrete set of 
control commands, based on minimal information of the 
dynamics, to the actuators.  To control the hovercraft, 
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the outer loop stabilizes the position error, and the inner 
loop stabilizes the orientation of the vehicle.  The 
stability and robustness of the controller is demonstrated 
in the presence of disturbances and noise through 
simulation. 

  Wang et al.[10] used a nonlinear control in order to 
study an amphibious hovercraft. Here the hydrodynamic 
and aerodynamic coefficients based on the angular speed 
and orientation were considered.  They introduced an 
adaptive multiple model approach to acquire a linearized 
model of the hovercraft and from there to set the different 
parameters based on weighting methods.  

Lindsey[11] modeled a remote controlled 
(non-autonomous) hovercraft using Newton’s second law, 
where the hovercraft had two thrust and  lift fans 
providing two separate sources of actuation.  The open 
and closed loop behavior of the system was simulated 
using the Matlab/Simulink environment.  The author 
mentioned that the model was successfully and accurately 
controlled.  

The previous work using the Direct Lyapunov 
Approach (DLA)[12-15] is taken as the starting point of this 
formulation for the design of the stabilizing nonlinear 
control law for underactuated hovercraft systems.  The 
attractiveness of the DLA used in the formulation is that 
this method offers a wider range of applications and the 
obtained linear algebraic equations (LAEs), ordinary 
differential equations (ODEs), and partial differential 
equations (PDEs) are more tractable than those obtained 
through earlier methods of underactuated mechanical 
system controller design[16,17].    

The objective of this work is to apply the DLA 
method to control the unmanned hovercraft system.  The 
Lyapunov based stability is designed and simulated to 
illustrate the efficacy of the designed control law. 

2  Dynamic and modeling analysis of the system 
The dynamic system was defined so that there are n 

generalized coordinates and m actuators, and the 
equations of motion governing the behavior of the 
autonomous hovercraft with nonholonomic constraints 
are determined from the Euler-Lagrange equations 

   ( ) ( )d L L
dt
  

       

q,q q,q M(q) q C(q,q) q G(q) τ
q q
    


   (1) 

where, nq  represents the vector of generalized 

coordinates, with x, y and  representing the generalized 
hovercraft position and orientation in the earth fixed 

coordinates, respectively.  and nq q   represent 

velocities, and accelerations, respectively, for the n=3 
degrees of freedom of the hovercraft system.  

2( ) : nL  q,q
 
is the Lagrangian defined as the 

kinetic energy minus the potential energy of the system.  

The right-hand side of Equation (1), specified as 

nτ , 

consists of the actuation for the degrees of freedom.  It is 
assumed that the degrees of freedom are ordered so that 
the first m elements of the right side vector contain the 
nonzero inputs.  For an underactuated system, only m of 
the inputs are nonzero where nm  .  In the dynamic 

equations of motion (1),  [ ( )] n nM q is the positive 

definite mass and/or inertia matrix, [ ( )] nC q,q q   
consists of centripetal and Coriolis forces and/or 

moments, and ( ) nG q consists of forces and/or 

moments stemming from gradients of conservative fields. 
The requirement of the control law is to stabilize the 

system and in order to achieve this, Lyapunov’s second 
method is applied for its development.  The control 
challenge arises from the nonlinear nature of the 
governing equations and the underactuation.  The 
candidate Lyapunov function is made of intrinsically 
positive quantities, part of which is described as a 
quadratic matrix product.   The goal of this effort is to 
use a trial Lyapunov function 

1V( ) [ ] Φ
2

 T
Dq,q q K q (q)      (2) 

where, 2V( ) : n q,q is the candidate Lyapunov 

function; Φ(q)  is a real scalar potential function of the 

generalized coordinates; KD
nn is a symmetric, 

positive matrix defined as the product 
( ) ( )DK P q M q      (3) 

and where P(q)nn is a matrix defined so that KD has 
the previously mentioned specified properties.  

The time derivative of the candidate function is made  
non-positive and this concept is the basis for the 
Lyapunov application to nonlinear control problems.  
The time derivative of Equation (2), together with the 
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equations of motion results in an equation that is solved 
by a matching method.  When this method is applied, 
the terms quadratic in the velocities are grouped together 
obtaining a set of linear ordinary differential equations 
(ODEs).  These equations are called the first matching 
condition[13-15]. 

Grouping terms which are linear in the velocities 
results in linear algebraic equations (LAEs) and these 
equations are called the second matching condition.   

The third matching condition involves only position 
coordinates resulting in linear partial differential 
equations (PDEs).  

3  Hovercraft model 

Figure 3 shows the geometry of the hovercraft. 

 
Figure 3  The simplified hovercraft model 

 

From the Figure 3, the position vector is defined in 
the earth fixed coordinates as q=[x,y]T2,  
represents the hovercraft orientation in the earth fixed 
coordinates, u and υ are linear velocities in surge 

and sway directions, respectively, r is the angular 

velocity, and F is the control force in surge.  
The kinematics in the inertial system that involves the 

hovercraft can be expressed as 

cos( ) sin( )
sin( ) cos( )

x u v
y u v

r

 
 



  
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



     (4) 

Manipulating and rearranging terms from Equation 
(4), expressions for the local velocities are found[18-20]. 

cos( ) sin( )
cos( ) sin( )

v y x
u x y

r

 
 



  
  
 

 
 


    (5) 

Using Equation (5), the kinetic and potential energy 
are derived to define the Lagrangian L=T−V and by 

applying the Euler-Lagrange formulation, Equation (1) is 
redefined as 

( ) ( )
0

 
    
  

F
M q q C q,q q τ       (6) 

where, F, as mentioned above, denotes the control 

force in the surge direction and τ denotes the control 

torque in yaw.  The control torque is a function of F and 
its perpendicular distance from the center of the fan to the 
center of mass of the hovercraft[21]. 

Note that in order to obtain a simple model capturing 
essential nonlinearities of the hovercraft, the inertia 
matrix was assumed to be diagonal and constant for 
simplicity.  If M is constant, the Coriolis and centripetal 
matrix is equal to zero.  The hydrodynamic damping 
was cancelled because it is not used in controlling the 
system.  

To use a direct Lyapunov method for designing a 
control law, the time derivative of Equation (2) is 
computed and it produces 

1
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  (7) 

   Following the procedures of the literature [22], 
Equation (7) is decomposed into three matching 
equations.  Since the KD is a constant matrix, this leads 
to the first marching condition as 

0D K      (8) 

The second matching equation, after expressing F as 

1F F q   and rearranging the q  terms, is 

1
1

1 ( )
0

v


 
    
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F
τ P q K     (9) 

for which the solution is 

1

m
T

v i i i
i




K P P          (10) 

where the i are constants chosen so that Kv is positive 

semi-definite and Pi is the ith column of P(q).  The 
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control law contribution from the second matching 
condition is the product of F1 and q . 

The third matching equation, where the first m 
equations in Equation (6) are used to determine the 
control law contribution   while the last n–m rows of the 
equation provide linear, first order partial differential 
equations for the potential as seen in 

2

2( ) ( ) ( ) ( ) 0
0

 
     
  

F
P q G q P q τ q      (11) 

where, G=0.  
In taking the time derivative of the candidate 

Lyapunov function, the potential, defined in Equation (2) 
is assumed to be a function of the generalized positions q 
alone.  At this time it is important to mention that the 
potential and the Hessian of the potential are needed in 
order to assure the stability condition of the system.  The 
Hessian which denotes the second derivative of the 
potential with respect to the generalized coordinates, must 
be positive definite, and it is given by 

2 2

1
2 2
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        (12) 

and the necessary condition on |H| is 
det( ) 0H               (13) 

for which all of the eigenvalues are positive.  The 
method to solve the third matching equation is similar to 
the matching equations developed for stabilization as 
shown in literature [22]. 

The different parameters are chosen such that the 
eigenvalues of the linearized system are the same as those 
chosen for stabilization. 

The Hessian of the potential is tested so that the 
potential is concave upward at the equilibrium point.  It 
is a convenient way to choose the parameters. 

The stabilization will be achieved, once all the stated 
constrains are satisfied.  The candidate Lyapunov 
function also needs to be tested in order to verify that the 
Lyapunov function is positive definite and its first 
derivative with respect to the time is non-positive. 
Testing the control law through simulation will verify the 
reliability of the process.  To do the numerical 
simulation, the derivation of the quantities KD, Kv the 

potential, the control inputs, and the coefficients are 
brought to Matlab from MAPLE where the symbolic 
manipulation was performed. 

3  Results and discussion 

In order to evaluate the results of the different 
proposed control laws, some simulations were performed 
using the following numerical values. The corresponding 
element of the M matrix for the hovercraft system are 
m1=m2=2.1 kg, J=0.0287 kg·m2.  The constant =1e-10, 
was chosen such that the Kv matrix is positive 
semi-definite.  The corresponding element of the KD 
matrix from the proposed control are KD11=26.496, KD21= 
0.01, KD31=800, KD22=10 KD33=90448, KD32=KD31. 

The simulation was performed in Matlab/Simulink 
with the corresponding structure illustrated in Figure 4.  

The control law designed is applied to the hovercraft 
to drive the states from a given initial condition to the 
origin and stabilizing them at that point.  Numerical 
simulation confirms that the nonlinear control law 
stabilizes the system.  The simulation results presented 
in the plots of Figures 5 and 6 illustrate the hovercraft 
position and velocity as well as the orientation angle and 
angular velocity as a function of time, respectively. 
   Figures 7 and 8 show the upward concave shape of 
the potential.  It demostres the stability of the system, 
thus the eigenvalues of the Hessian are positive.  From 
the plot in Figure 7, it is seen that y is contained in the 
interval (-30, 30), while the x position is contained in the 
interval (-1, 1) where Φ(x, y) is a convex function.  
Values of x and y outside the stated region also produce 
stable behavior.  
   Figure 8 presents a 3D plot of the potential for the 
interval (-30, 30) for  (psi) and the interval (-26, 26) for 

y, such that Φ(y, ) is a convex function. 
Figures 9 and 10 show the Lyapunov function 

performance and its first time derivative, as well as the 
control law.  The behavior shown in Figures 9 and 10 
demonstrate the validity of the Lyapunov candidate 
function because it is monotonically decreasing with time 
as expected for the stability condition. 

The behavior of the control law to stabilize the 
hovercraft system is shown in Figure 11 and Figure 12 for 
F and for , respectively.    
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Note: u, v and r converge to zero. 

Figure 4  Control architecture 
 

  
Figure 5  Stabilization of the Hovercraft  

(Generalized position x, y and orientation) 

Figure 6  Velocity variables (u, v and r) for stabilization of the 
hovercraft 

 

  
Figure 7  Hovercraft Potential (x-y plane) Figure 8  Hovercraft potential (y- plane) 
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Figure 9  Lyapunov time history      Figure 10  Lyapunov time derivative 

 

  
Figure 11  Control law (F) Figure 12  Control law () 

 

4  Conclusions  

Agricultural applications such as weed control, crop 
preparation, and more efficient use of fertilizers are 
procedures that involve low environmental and operator 
exposure risk together with the requirement of successful 
crop production.  The operations of fertilizer, pesticide, 
and herbicide applications must be made easier and safer 
by using autonomous vehicles for the performance of 
these tasks.  When using an autonomous hovercraft 
vehicle, the dispersion of the agricultural quantities will 
be highly effective compared to aerial vehicles due to the 
surface proximity on which they act and the dispersion 
can be accomplished without the risk of operator 
exposure.  In order to successfully achieve this objective, 
a nonlinear controller based on direct Lyapunov approach 
was designed for an unmanned hovercraft.  

This work introduces the methods which are applied 
to a model that can be used to simulate the behavior of an 
underactuated system with three degrees of freedom and 
two control inputs.  A scheme based on a Lyapunov 
approach to stabilize the surge, sway and angular velocity 

of yaw has been proposed as a means to design the 
controller.  The model and the controller are tested in 
the Matlab/Simulink environment to demonstrate the 
hovercraft stabilization. 

The simulated model was used to test the control law 
showing the stability performance.  The designed 
control produced good performance results showing a fast 
response.  It must be acknowledged that the hovercraft 
dynamics will change with the quantity of fuel and 
agricultural products stored on board where the lighter the 
hovercraft becomes, the quicker the positioning transients.  
One advantage in this work was the symbolic manipulator 
which allowed the modifications of the parameters and 
quick transferal of the symbolic manipulator output to 
Matlab/Simulink environment to produce new simulation 
results.  

Modeling and control technologies are required to 
assure that the prototype will perform safely, reliably, and 
robustly in the presence of disturbances and changing 
weight.  The designed control law has been 
implemented on a hovercraft prototype equipped with an 
Arduino microcontroller together with a GPS sensor for 
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position measurement and an inertial measurement unit 
(IMU) for orientation measurement.  The goal is to 
analyze the behavior of the propulsion drivers and to 
determine whether it is sufficient to direct and stabilize 
the hovercraft.  This is the next step of this work which 
is currently in progress. 
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