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Abstract: Paddy rice is one of the most important crops in the world. Accurate estimation and monitoring of paddy rice 
phenology is necessary for management and yield prediction.  Remotely sensed time-series data are essential for estimation of 
crop phenology stages across large areas.  Here, the paddy rice phenological stages (i.e., transplanting, tillering, heading, and 
harvesting) were detected in Jiangxi Province, China.  A comparison study was conducted using ground observation data from 
10 agricultural meteorological stations, collected between 2006 and 2008.  The phenological stages were detected using 
Moderate Resolution Imaging Spectroradiometer (MODIS) time-series enhanced vegetation index (EVI) data. Savitzky–Golay 
filter and wavelet transform were used to reduce the noise in the time-series EVI data and reconstruct the smoothed EVI 
time-series profile.  Key phenological stages of double-cropping rice were detected using the characteristics of the smoothed 
EVI profile.  The root mean square errors (RMSEs) for each stage were ±10 days around the ground observation data.  The 
results suggest that Savitzky–Golay filter and wavelet transform are promising approaches for reconstructing high-quality EVI 
time-series data.  Moreover, the phenological stages of double-cropping rice could be detected using time-series MODIS EVI 
data smoothed by Savitzky–Golay filter and wavelet transform. 
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1  Introduction 

Rice is an important crop, as it occupies more than  
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11% of the world’s cropland area and provides food for 
approximately 50% of the world’s human population[1].  
China is one of the major rice cultivation countries, which 
producing approximately one-third of the global rice 
crop[2].  The double rice cropping system (two rice crops 
in a year) in China is about 66% of the total paddy rice 
area[3], producing 61.3% of the total rice yield[4].  
Estimation and monitoring of double-paddy rice 
phenology could provide important information for rice 
growth monitoring and yield prediction.  Further, 
monitoring crop phenology across large areas is essential 
for the estimation of net primary production and crop 
yield[5].  The timing of crop planting and harvesting is 
important, as it also influences the spatial and 
inter-annual variability of terrestrial carbon cycles[6]. 

The phenological stage of crop can be measured using  
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field survey, simulated by bioclimatic models or detected 
with remotely sensed data[7] or carbon flux data[8-10].  
Ground observation provides phenological data with high 
temporal resolution.  Haw et al.[11] used colour vision to 
detect the rice maturity.  Pei et al.[12] integrated sensor 
system for monitoring rice growth conditions based on 
unmanned ground vehicle system.  However, Ground 
observation is difficult to extrapolate the data to large 
areas[13,14].  Bioclimatic models depend on the accuracy 
of the vegetation maps and climate records used as 
forcing variables at larger scales[7].  Remotely sensed 
data provide an opportunity to detect the phenological 
stages of crops at regional to global scales[13]. 

Time-series analysis of remote sensing data provides 
important information for estimating crop phenological 
stages.  The most common approach is the utilization of 
vegetation indices (VI) such as normalized difference 
vegetation index (NDVI)[15] and enhanced vegetation 
index (EVI)[16] to detect crop phenology.  Moderate 
Resolution Imaging Spectroradiometer (MODIS) has a 
250-m spatial resolution in red and near infrared bands 
and minimizes the mixed-pixel effect that limits the 
application of the coarser resolution of 1-km data sets 
from the National Oceanic and Atmospheric 
Administration’s Advanced Very High Resolution 
Radiometer (NOAA/AVHRR) and SPOT- 
VEGETATION[17-19].  MODIS time-series VI products 
are now used for building a MODIS global vegetation 
phenology product that provides detects of the timing of 
major seasonal vegetation events at global scales[20].  
Sakamoto et al.[21] applied multi-temporal seasonal 
MODIS EVI data to detect the spatial distribution of 
heading date and rice-cropping system in the Mekong 
Delta relative to seasonal changes in water resources in 
2002 and 2003.  Motohka et al.[22] found that the most 
robust dataset for monitoring rice paddy phenology 
during monsoon in Asia is the daily EVI derived from a 
combination of Terra/MODIS and Aqua/MODIS.  
Boschetti et al.[23] used five years (2001–2005) data of 
MODIS NDVI 16-day composites to automatically 
retrieve key phenological parameters such as the start of 
season (emergence), peak (heading), and end of season 
(maturity).  Wang et al.[24] identified the rice heading 

date and analyzed the spatial characteristics at the 
regional scale by using multi-temporal MODIS NDVI 
data.  Xiao et al.[25] evaluated the MODIS phenological 
product during 2001 to 2009 in combination with 
ground-based phenological data for wheat/maize rotation 
systems in the North China Plain. 

Time-series VI data derived from satellite data 
typically contain noise induced by cloud contamination, 
atmospheric variability, and bidirectional reflectance.  
Noise reduction or model fitting for observed data is 
necessary before determination of phenology stages.  An 
effective method for data preprocessing is the utilization 
of a smoothing algorithm for noise reduction[5].  A 
number of methods for reducing noise and constructing 
high-quality VI time-series data have been developed and 
evaluated in the last decades.  Existing studies suggest 
that the Savitzky–Golay filter and wavelet analysis are 
two robust algorithms that reduce noise in time series 
such as VI time series.  The Savitzky–Golay filter 
reduces noise in NDVI time-series data, which is 
primarily caused by cloud contamination and atmospheric 
variability[26].  The wavelet transform also can be 
utilized to remove noise.  The advantage of the wavelet 
transform is the feasibility of identifying the timing of 
events, e.g. localized objective signals, with the presence 
of noise[5].  Chen et al.[27] conducted rice cropland 
mapping using time-series MODIS data by wavelet 
filtering, and the study showed that good results can be 
achieved using wavelet transformation in cleaning rice 
signatures.  Yang et al.[28] smoothed the hyperspectral 
imagery noise using several smoothed method which 
include wavelet, S-G method and other methods.  

EVI has a greater dynamic range than NDVI, and 
therefore is more suitable for capturing dynamic crop 
phenology without saturation[16,29].  The main objectives 
of this study were to detect the paddy rice phenological 
stages (i.e. transplanting, tillering, heading, and 
harvesting) using smoothed MODIS EVI time-series and 
ground observation data.  To reduce the noise and 
reconstruct the smoothed time-series profile, MODIS EVI 
time-series data were smoothed using the Savitzky–Golay 
filter and wavelet transform.  The accuracy of estimation 
was assessed with ground observation data collected 
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between 2006 and 2008 for 10 agricultural 
meteorological stations in Jiangxi Province, China. 

2 Methods 

2.1  Study area 
Jiangxi Province is located in southern China from 

24°29′-30°04′N and 113°34′-118°28′E.  It is 166 900 km2 
and comprised of approximately 36% mountainous areas, 
42% hills, and 22% mounds, plains, and water bodies. 
Poyang Lake is the largest basin in Jiangxi Province.  
This region has a typical humid subtropical climate, with 
sufficient sunshine, plentiful rainfall and a long frost-free 
period.  In 2009, the average temperature of the 
province was 18.9°C, with 1 438.1 mm annual 
precipitation and 1 686.3 hours of sunshine[30].  

Currently, there are nearly 400 agricultural 
meteorological stations operated by the Chinese 
Meteorological Agency (CMA) in China.  At the 
agricultural meteorological stations, crops are observed at 
regular intervals.  The resulting crop growth records 
provide detailed information about crop types and 
phenology.  In this study, we used paddy rice phenology 
data collected at 10 agricultural meteorological stations in 
Jiangxi Province as ground validation data.  
Double-paddy rice was grown at all 10 stations, and each 
station monitored paddy rice area that was greater than  
1 km2 (Figure 1).  

 
Figure 1  Study area and agricultural meteorological stations 

 

2.2  Data Preprocessing  
MOD09A1 8-day composite products with 500-m 

spatial resolution were used in this study.  Four MODIS 
files (h27v05, h27v06, h28v05, and h28v06) from 2006 

to 2008 cover Jiangxi Province were downloaded from 
the Earth Observing System Data Gateway.  EVI values 
were calculated using surface reflectance values using the 
EVI equation: 
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where, ρblue, ρred, and ρNIR are reflectance of MODIS blue, 
red, and near infrared bands, respectively; L (= 1) is the 
canopy background adjustment; C1 (= 6) and C2 (= 7.5) 
are aerosol resistance coefficients; and G (= 2.5) is a gain 
factor[16].  
2.3  Reconstruction of VI time series  
2.3.1  Savitzky–Golay filter 

The Savitzky–Golay filter applies a simplified 
least-squares fit convolution method to smooth noisy 
time-series data[31].  The convolution is a weighted 
moving average filter with a polynomial of a certain 
degree.  The weight coefficients (below referred to 
coefficients), when applied to a signal, perform a 
polynomial least-squares fit within the filter window.  
The polynomial is designed to preserve high order 
moments within the data and reduce the bias introduced 
by the filter.  This filter can be applied to any 
consecutive data that has data points at fixed and uniform 
intervals along the chosen abscissa and curves formed by 
plotting the points that are continuous and more or less 
smooth.  The general equation of the simplified 
least-square convolution for EVI time-series smoothing is 
described as Eq. (2)[26]: 
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where, Y is the original EVI value; Y* is the smoothed 
EVI value; Ci is the coefficient for the ith EVI value of the 
filter (smoothing window); N is the number of 
convoluting integers, which is equal to the smoothing 
window size (2m + 1); and j is the running index of the 
original ordinate data table.  

Two parameters (m and d) must be defined in advance.  
The first parameter, m, is the half-width of the smoothing 
window.  The second parameter, d, is an integer 
specifying the degree of the smoothing polynomial.  In 
this study, d and m are 5 and 4, respectively. 
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2.3.2  Wavelet transform 
Wavelet transform implements the decomposition of a 

signal at different spatial or time scales onto a set of basis 
functions.  It has been widely applied in remote sensing 
data analysis[32,33].  The set of basis functions, {ψ a, b (t)}, 
can be generated by translating and scaling the so-called 
mother wavelet, ψ(t), according to the following 
equation[34,35]: 

,
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              (3) 

where, a is a scaling parameter and b is a shifting 
parameter. In discrete form, a and b are defined as: 

( , ) (2 ,2 )j ja b k                (4) 

where, j and k are integral values[5]. 
Several mother wavelets have been proposed, e.g., 

Daubechies, derivative of Gaussian (DOG) and 
Coiflet[29,36].  The names of the Daubechies family of 
wavelets are written as dbN[37], where N is the order and 
db is the ‘surname’ of the wavelet[38].  In this study, db10 
was applied to carry out the wavelet transform. 
2.4  Estimating phenological stage 

Generally, there are three types of methods to detect 
crop phenological stages: threshold-based methods, trend 
derivative methods, and inflection point methods[13,39].  
The choice of a fixed threshold value is critical for 
defining phenology stages for environments[40].  We used 
features of time-series vegetation index (e.g., maximum 
value deviation) to extract key phenological dates. 

As the heading time is the peak of the growth period, 
paddy rice also has maximum VI values and cover 
fractions in remote sensing images at heading time.  
Consequently, heading time can be detected as the 
maximum EVI value in the growing season of paddy rice.  
Because there are two peaks for double season rice, the 
heading time of early and late rice are indicated by the 
two time-series data peaks, EVImax1 and EVImax2.  

According to the seasonal trends and the peak values 
of EVI time-series data, EVI data can be divided into two 
stages: ascending and descending stages.  EVI increases 
during the growth stage before heading.  Because paddy 
rice is transplanted to the irrigation field and the plants 
are small during the transplanting period, remote sensing 
images reflect mainly water and soil.  Therefore, the 

minimum values of EVI time-series profiles are at the 
start of the growth season.  Paddy rice is in its most 
reproductive stage after heading, and EVI values decrease 
again to the minimum value at the time of the harvest.  
These changes permit the identification of transplantation 
times from EVI time series as follows: the date with 
minimum EVI before the peak value of first-season rice is 
the transplanting time for early rice and the time with 
minimum EVI between the two peaks of double-season 
rice is the transplanting time for late rice and the harvest 
time of early rice.  The period with minimum EVI after 
the second heading is the harvest period for 
second-season paddy rice.  It should be noted that the VI 
of paddy rice fields continues to decrease after harvest of 
second-season paddy rice, but before transplantation of 
first-season paddy rice.  This results in different 
minimum EVI values for first-season transplanting and 
second-season harvest.  In the present study, the rice 
growing season was defined as the period between 
pre-transplanting of first-season rice (16 days before 
transplanting) and post-harvest of second-season rice (16 
days after harvest), e.g. day 90–320 of the year.  

Tillering and harvesting can be identified with a 
flexible dynamic threshold method.  Tillering begins 
approximately 10 days after transplanting and EVI 
rapidly increases.  This means that tillering can be 
detected by defining the corresponding EVI threshold.  
By comparing thresholds of 5%, 10%, and 20%, we 
found that an increase of 10% of the difference between 
the maximum value and the minimum value during the 
EVI ascending curve is an appropriate threshold.  We 
defined the start of tillering as the time when EVI 
increases above the threshold.  Similarly, the start of 
harvesting was defined as the time when EVI decreased 
to below 10% of the difference between the maximum 
and minimum values.  Tillering EVI (t1) and maturation 
EVI (t2) of early rice can be expressed as below: 

1 min1 max1 min1EVI( ) EVI 10% (EVI EVI )t      (5) 

2 min 2 max1 min 2EVI( ) EVI 10% (EVI EVI )t      (6) 

The EVImin1 and EVImax1 are the minimum and 
maximum data of early rice, and the EVImin2 and EVImax2 
are the minimum and maximum data of late rice (as 
showed in Figure 2). 
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Note: DOY means day of year. The same below. 

Figure 2  The EVI profile of double-cropping rice 

3  Results and discussion 

3.1  Comparison of results of Savitzky–Golay filter 
and wavelet transform 
We compared the smoothed EVI time-series data 
obtained for Liantang Station and Qingjiang Station by 
using the Savitzky–Golay filter and wavelet transform 

(Figure 3).  The phenology stages could be clearly 
identified from the general pattern of EVI time series.  
Most of the noise was successfully eliminated from the 
EVI time series.  EVI values obtained by the Savitzky– 
Golay filter are greater than those obtained by the wavelet 
transform (Figure 3a and 3b), it is because the envelope 
data were used to fit the time series EVI.  The Savitzky– 
Golay filter tends to retain the peak point data of EVI 
profile, e.g., the data values of the DOY 33 were retained 
using Savitzky–Golay filter (Figure 3b), whereas the 
wavelet filter smoothed EVI values were removed.  
Compared with the Savitzky–Golay filter smoothed data, 
EVI curves smoothed by wavelet filter keep the original 
shape of EVI data as well as minimized the difference 
between the original and smoothed EVI data, the wavelet 
filter also removed high frequency components on the 
same day. 
 

 
a. Liantang station  b. Qingjiang station 

 

Figure 3  EVI time series generated using Savitzky–Golay and wavelet filter 
 

3.2  Estimation of Phenology stages 
The EVI time-series profile of Qingjiang Station in 

2006 was selected for estimating key phenological dates 
for paddy rice.  The Savitzky–Golay filtering algorithm 
was applied to process EVI time-series data.  We can 
conclude from the Figure 4 that the first-season rice was 
transplanted between late April and early May, which 
matches the transplanting date derived from remote 
sensing data.  After the second transplanting, paddy rice 
experienced the entire growth period until harvest in early 
November.  The EVI time series reflected the changes in 
the morphological and physiological condition of the rice 

during this period.  Thus, the dates of transplanting, 
tillering, heading, and maturation could be extracted from 
the remote sensing data using the phenology monitoring 
algorithms.  

Key phenological dates of rice growth period only last 
a short time.  The phenology dates identified using 
remote sensing data match well to every key stage of rice 
growth, and remotely sensed data can be adopted for 
monitoring rice-growing conditions. 

With the comparison between remote sensing data  
and ground observations of early and late rice 
phenological stages, we can found the data can be similar 
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or identical (Figure 5).  The results indicate that the 
estimation of double-season rice phenological stages is 
feasible using time-series MODIS EVI data.  

 
Figure 4  Phenological stages estimation of double paddy rice at 

Qingjiang station 

 
a. Early rice          

 
b. Late rice. 

Figure 5  Comparison between statistical data and the dates of 
phenological stages detected by methods using the Savitzky–Golay 

and wavelet filters 

3.3  Accuracy assessment and analysis 
The differences between the detected early and late 

paddy rice phenological dates with ground observation 
data for 10 agricultural meteorological stations from 2006 
to 2008 were assessed (Figure 6).  Twenty-two detected 
dates had errors of ±16 days (10% of dates) for early rice.  
For late rice, 18 sample dates (8% of dates) had errors 
that exceeded ±16 days. 

 
a. Early rice                           

 
b. Late rice 

Figure 6  Comparison of phenological dates between ground 
observation data and MODIS-derived estimation in growing period 

 

Table 1 shows the root mean square error (RMSE) of 
the detected phenological dates and ground observations.  
The error of detected early paddy rice phenological date 
with the Savitzky–Golay filter is larger than that achieved 
using the wavelet transform.  However, the RMSE of 
late paddy rice phenology dates detected using the 
Savitzky–Golay filter is smaller than that obtained using 
the wavelet transform.  The detected dates for each stage 
were generally within ±10 days of the ground observation 
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data.  The largest RMSE was obtained in the early rice 
transplanting period while the Savitzky–Golay filter was 
applied, and the smallest RMSE was obtained during the 
late rice transplanting period.  For the same method, the 
RMSE of EVI value for early rice is lower than late rice 
results, it is because the late growth stage is  in the 
summer and autumn seasons (July-October), it is most 
likely to occur during heavy rain, resulting in large errors 
of remote sensing monitoring results.  The 8-day 
composite MODIS EVI data and the ground per day 
observation data have temporal resolutions, and the 
accuracy assessment using the “truth” acquired by ground 
observation should be improved in future studies. 

 

Table 1  RMSE of detected phelonogy date and ground 
observation data 

Days              

 Reconstruction 
method Transplanting Tillering Heading Harvesting 

Savitzky–Golay  
filter 10 9 8 9 Early 

rice 
wavelet transform 9 8 8 9 

Savitzky–Golay  
filter 8 12 11 8 Late 

rice 
wavelet transform 9 13 10 9 

 

The errors of remote sensing based phenological data 
may be induced by: (I) The remote sensing data are  
8-day compositing MODIS data, and the ground 
phenological data were acquired with daily observations. 
That means the remote sensing based phenological data 
do not match the ground observations on temporal scale, 
and thereby reducing the accuracy of remote sensing 
phenology; (II) the spatial resolution of MODIS data used 
in this study is 500 m, and ground observations are 
acquired at the individual rice plants or small-scale fields.  
The spatial scales of remote sensing data and ground 
observations did not match very well.  In summary, the 
temporal and spatial scale difference between the remote 
sensing data and ground observation data may introduce 
errors in the paddy rice monitoring. 

4 Conclusions 

Double-cropping rice occupies about two-thirds of the 
total paddy field area in China.  Estimating the 
phenology of double-cropping rice is necessary for 

monitoring and managing rice growth.  In this study, the 
phenological stages (i.e., transplanting, tillering, heading, 
and harvesting) of double-cropping rice in Jiangxi 
Province were detected using time-series MODIS EVI 
data.  Three strategies were employed to analyze the 
EVI time-series profiles: (I) The EVI time-series data 
were reconstructed using the Savitzky–Golay filter and 
wavelet transform to monitor the phenology of paddy rice; 
(II) The feasibility and model for deriving key 
phenological stages for double-cropping rice such as 
transplanting, tillering, heading, and harvesting, by using 
MODIS EVI temporal profiles were investigated; and (III) 
The phenological-stage models were validated using 
ground observations from 10 agricultural meteorological 
stations, and their accuracies were analyzed.  

The results suggest that both the Savitzky–Golay 
filter and wavelet transform are promising methods for 
reconstructing high-quality EVI time-series profiles.  
The key phenological dates detected from MODIS EVI 
time-series data have good agreement with ground 
observations acquired from the agricultural 
meteorological stations.  The dates for each growing 
stage were generally detected within ±10 days of the 
ground observations.  The difference of temporal and 
spatial scale between the MODIS data and ground 
observation data may be the main error sources of remote 
sensing based paddy rice monitoring.  Thus, the 
phenological stages of double-cropping rice can be 
monitored well by using the reconstructed MODIS EVI 
time-series data.  The key phenological date and the 
associated parameters could be used in crop management 
and yield estimation in precision agriculture. 
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