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Abstract: Air quality in many poultry buildings is less than desirable.  However, the measurement of concentrations of airborne 

pollutants in livestock buildings is generally quite difficult.  To counter this, the development of an autonomous robot that could 

collect key environmental data continuously in livestock buildings was initiated.  This research presents a specific part of the 

larger study that focused on the preliminary laboratory test for evaluating the navigation precision of the robot being developed 

under the different ground surface conditions and different localization algorithm according internal sensors.  The construction of 

the robot was such that each wheel of the robot was driven by an independent DC motor with four odometers fixed on each motor.  

The inertial measurement unit (IMU) was rigidly fixed on the robot vehicle platform.  The research focused on using the internal 

sensors to calculate the robot position (x, y, θ) through three different methods.  The first method relied only on odometer dead 

reckoning (ODR), the second method was the combination of odometer and gyroscope data dead reckoning (OGDR) and the last 

method was based on Kalman filter data fusion algorithm (KFDF).  A series of tests were completed to generate the robot’s 

trajectory and analyse the localisation accuracy.  These tests were conducted on different types of surfaces and path profiles.  The 

results proved that the ODR calculation of the position of the robot is inaccurate due to the cumulative errors and the large 

deviation of the heading angle estimate.  However, improved use of the gyroscope data of the IMU sensor improved the accuracy 

of the robot heading angle estimate.  The KFDF calculation resulted in a better heading angle estimate than the ODR or OGDR 

calculations.  The ground type was also found to be an influencing factor of localisation errors. 
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1  Introduction 

The air quality inside a livestock building is more and  
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more taken seriously by the researchers.  Previous 

research has demonstrated that sub-optimal air quality not 

only could influence the productivity of farm animals, as 

well as the health and well-being of livestock and 

workers
[1,2]

, but also will affect the healthy and sustainable 

development of the pig industry
[3,4]

.
 
 

With the development of electronic technology, 

detection technology, information and communication 

technology (ICT), a variety of air quality measurement 

systems are being studied.  The earliest livestock 

environment monitor system was developed based-on 

micro-chip computer, this system collected the data of 

temperature, humidity, the concentration of CO2 and the 

concentration of NH3 inside the animal buildings
[5]

, adjust 
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the data through heater equipment and fans.  The 

commercial technologies with better anti-interference 

ability, such as Industrial personal computer (IPC), 

Programmable controller (PLC), field bus, etc., were 

suitable to be used for the animal environment monitor 

system, collected environment data, drove the ventilation 

system
[6-8]

.  The above said are the traditional distributed 

system, there are wiring complex, easy to cause the 

problems of poor contact, maintenance difficulties, and 

the high cost, etc..  The development rapidly of Wireless 

technologies, wireless transmission has an obvious 

advantage of significant reduction and simplification in 

wiring and harness, low wiring cost.  Therefore, the 

wireless system will be instead of wired system using to 

measure the environment data of animal building
[9-11]

.  

As the indoor environmental parameters distribution is 

inhomogeneity.  It is very difficult to choose the data 

collection points and to deploy the wireless sensors.  

The environmental condition in livestock buildings are 

needed to be monitored frequently, flexibly, freely.  A 

portable, low cost, mobile instrument was recently 

developed in Australia
[12-16]

, it is able to fix on any point 

indoor to measure the environment data, but this system 

was immobile.  Thus, a project with a long-term aim to 

develop an autonomous unmanned survey vehicle or a 

Livestock Building Guard (LBG) was initiated.  

Agricultural robots are being applied in variety of 

areas to execute tasks that are tedious, repetitive, dirty, 

hazardous and dangerous.  Some of the well know 

applications of livestock robotics are: (1) Automated 

Milking Systems (AMS) that significantly reduced the 

amount of labor involved in milking
[17]

; (2) virtual 

fencing that was developed for controlling the 

movements of free-range cattle
[18,19]

; (3) and cleaning 

robots that were designed for improving the hygiene 

levels of piggery buildings
[20]

.  The LBG is a livestock 

robot that would be used for continuous real-time 

measurement of environment factors within livestock 

buildings, thus improving poultry welfare and productivity. 

Self-localization is a very important task for 

autonomous robots in real-world environments
[21]

.  The 

accurately determining position and orientation of mobile 

robots is the basis of accurate navigation
[22]

.  Relative 

localization and absolute localization are two different 

kinds of localizations which depend on the sensors 

utilized
[23-26]

.  Autonomous mobile robot navigation 

sensors could be divided into two categories: internal 

sensors and external sensors.  Internal sensors measure 

the location and heading angle of the mobile robot. 

External sensors observe the environment
[27-30]

.  Relative 

localization method usually utilize internal sensors fixed 

on-board the autonomous vehicle, such as odometer, 

gyroscope, accelerometer, compass, etc.  The research 

focused on robots that envisaged to be used inside 

livestock buildings.  As the wheel mobile PBG moves 

continuously, know exactly what the location is the need 

of navigation and parameters detection.  The livestock 

building ground usually is hard ground, due to feed, grass 

and other scattered, the ground situation will change 

softer.  The specific aim of this article is to present the 

results of a specific section of the larger project that 

focused on the preliminary laboratory test for evaluating 

the precision of the navigation accuracy of the robot that 

is being developed under the different ground surface 

conditions and different localization algorithm according 

internal sensors. 

2  Materials and methods 

2.1  Robotic vehicle  

The robot was constructed using off-the-shelf vehicle 

chassis and electronics components.  The vehicle chassis 

had four motors (i.e. each wheel was steered by one 

motor) and each DC motor (DC-Direct Current) was 

independently controlled by a PWM (Pulse Width 

Modulation) digital motor driver (Sabertooth) 

(Dimension Engineering, Sabertooth 2×10R/C, Illinois, 

U.S.A).  The motors’ speed was monitored with four 

US-Digital Encoder (QME-01) (National Instruments, 

Austin, Texas, U.S.A).  The robot was controlled by a 

PC compatible embedded computer (Arduino, Sandy 

Bridge—the 2
nd

 Gen Intel
@

) (Arduino, Sandy 

Bridge—the 2
nd

 Gen Intel
@

, Ivrea, Italy) and a low cost 

9DOF MEMS IMU sensor (SEN-1072) (SEN-1072, 

Analog Devices, Norwood, Massachusetts, U.S.A) was 

used to measure the vehicle’s attitude information. 

The control system steered the wheels via motors  
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connected to the wheels shaft and achieved the vehicle 

turn by changing the speed of the motors situated on the 

left and right sides (i.e. a differential steering system).  

The system movement control parameters were the four 

wheels’ angular velocity of rotation.  When the two 

sides of wheels had the same speed but opposite 

directions, the vehicle was able to turn sharply.  The 

system structure and the robot are shown in Figure 1. 

   

Figure 1  System structure diagram and picture of the robot 

 

The measurement sensors (temperature, relative 

humidity and dust sensors) (MA-DFR0066, little Bird 

Electronics, Sydney, NSW, Australia) were fixed to the 

vehicle platform and connected to the embedded 

computer indirectly through an Arduino microcontroller 

(Sandy Bridge—the 2
nd

 Gen Intel
@

, Ivrea, Italy).  

2.2  Dead-reckoning 

   Dead reckoning (DR) is a method of mobile robot 

localization via a simple mathematical procedure to 

determine the present location of a robot
[31]

.  Dead 

reckoning using odometers and an Inertial Measurement 

Units (IMU) is a simple method of achieving robot 

localisation.  

As the robot moves on the ground, the odometers 

produce a signal sequence to input to the on-board 

computer.  The number of signal pulses and time 

interval was converted into the distances travelled by the 

Equation (1): 

M C
D

G N

 
 


                (1) 

where, ΔD is the distance moved by each side; ΔM is the 

change in the odometer count from this step to the next; C 

is the circumference of the wheel; G is the gear ratio; N is 

the number of odometer marks per wheel revolution. 

Assuming that the whole robot vehicle is symmetrical, 

the two left wheels and the two right wheels have the 

same velocity.  When the left wheel speed is equal to the 

right wheel speed, the robot vehicle will go on a straight 

line.  When the two speeds are not equal, the robot 

vehicle will turn and the turning angle will be dependent 

on the difference of the two speeds.  It is assumed that 

the change in position for each time interval is very small, 

thus the heading change can be approximated by: 

L R
k

D D

W


  
               (2) 

where, W is the robot vehicle’s width of left and right 

wheel’s center lines; ΔDL, ΔDR are the robot vehicle’s left 

and right side distances travelled in the Δt time interval. 

So the position (xe, ye, θe) of the robot in the indoor 

environment could be calculated cumulatively, the 

calculation method is shown in the Equation (3): 

1| | cose k k kx x x D      

1| | sine k k ky y y D               (3) 

1| |e k k k       

2.3  Localization based-on Kalman Filter data fusion 

The accuracy of gyroscope heading generally 

deteriorates with time
[32]

.  However, methods such as 

Kalman Filter could be employed to reduce errors due to 

the random bias drift of gyroscope.  Kalman filter is an 

optimal recursive data processing algorithms and a 

technique for state and parameter estimation.  

Navigation is one of the useful applications of the 
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Kalman filter
[26]

.  Kalman filter is the most widely used 

data fusion tools.  The dead-reckoning localization could 

potentially degrade the accuracy robot localization over 

long periods of operation.  The Kalman filter calculation 

combine odometers increment heading angel and 

gyroscope heading angle information to derive the 

optimal heading angel estimate, leading to more accurate 

robot position estimation.  

Assuming z-axis gyroscope output the z-axis angular 

velocity ωgk, this value is the robot vehicle’s angular 

velocity in the ground  plane (x-y plane), the once 

integrated, it is the heading angular φk of the robot vehicle.  

The gyroscope heading angel equation is   calculated as 

below Equation (4):  

k gk dt                   (4) 

Then the heading angle calculation equation, which 

combine odometer increment heading angel and 

gyroscope angel, should be:  

k k k                   (5) 

According the vehicle’s kinematics equation: 

1 cos( )
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      cos sin
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  (7) 

From the Kalman filter state equation: Xk+1=AkXk +  

Bk + wk, we could drive the robot Kalman filter state 

equation, as demonstrated below: 

1

1

1
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(8) 

Here, 

k
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. 

The  Kalman  filter  measurement  equation  style:      

Zk = HXk + vk, the robot kalman filter measurement 

equation is as below:  

1 0 0

0 1 0

k
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k k
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         (9) 

Here, 
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In the Equations (8) and (9), wk, vk are the process 

noise and measurement noise of the robot system 

respectively, while they are zero-mean Gaussian white 

noise, their covariances matrix are Q, R respectively.  

2.3  Experimental setup 

A number of experiments were conducted to assess 

the accuracy of the dead-reckoning method in relation to 

robot localization.  After planning a predetermined path 

on the ground, the robot vehicle was initialised at the 

origin of the established path profile.  The centre of the 

robot vehicle gravity was overlapped with the point of 

origin and while the robot was driven from the start to the 

end point it was stopped periodically.  At each stop, a 

small marker was placed on the ground to indicate the 

location of the robot via a pointer attached to the robot.  

After the robot moved along the whole path profile, 

the distances between these markers and the coordinates 

of the originally planned path were measured using a tape 

measure.  These measurements described the difference 

between the actual and pre-planned path trajectory.  

While the robot was in motion, the odometers and IMU 

sensor data was also collected in the robot on-board 

computer.  After finishing the test, the sensors’ data 

were recovered.  The same tests were repeated on 

different types of surfaces, such as carpet, concrete and 

sawdust.  The experimental setup on the carpet surface 

is shown in Figure 2. 

In order to accurately grasp the problems inherent 

with the odometer positions, a number of tests were 

conducted to establish the expected errors during both a 

straight line and rotational movements. 

Localization accuracy was calculated based on using 

data from (1) odometers only, on (2) using combined data 

from odometers together with gyroscope data, and on (3) 

using Kalman filter data fusion algorithm.  The 
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‘odometers only’ dead-reckoning (ODR) method was a 

method of calculating the position of the robot using only 

odometers data.  The ‘combined odometers and 

gyroscope dead-reckoning’ (OGDR) method is a method 

of calculating the position parameters using odometers 

and gyroscope data, and the heading angle only used the  

once integrated value of  the rate gyroscope data.  The 

Kalman filter data fusion algorithm (KFDF) uses the 

Kalman filter recursive method to derive the optimal 

estimate heading angel, and then calculate the position by 

fusing the gyroscope and odometer data. 

 

Figure 2  Experimental setup on the carpet 

 

Figure 3  Geometry diagram of the offset compensation 

calculation (The centre point coordinates (x, y) of mobile robot is 

the robot’s location, while θ is the robot heading angle) 
 

2.4  Offset compensation and error correction 

The robot’s movement/trajectory was described based 

on the centre of the gravity.  However, the movement of 

the robot could not be recorded directly at the centre of 

gravity. Instead, a small laser pointer was attached to the 

back of the robot rigidly.  When the robot moved on the 

ground along a pre-planned path, the pointer position was 

marked and measured.  However, as mentioned before, 

this measurement was not taken at the centre of the 

gravity of the robot.  Thus, the truth position of the robot 

was calculated by using a compensation offset value.  

The offset value calculation is shown in Figure 3.  We 

know from the geometry relation that: 

,  arctan
a

b
       

Then we could calculate the offset value: 

2 2 cosx a b                 (10) 

2 2 siny a b                 (11) 

where, a, b are the size of determining by the distance of 

centre of gravity and measurement pointer; θ is the robot 

vehicle heading angle at P position. 

It was recognised, that localisation errors would 

accumulate over time during the dead-reckoning 

calculations based-on odometer data only.  In order to 

correct the errors, a number of small tests were conducted 

to establish the expected errors as the robot vehicle 

moved.  The robot was driven on a straight line and the 

corresponding odometers’ data were recovered and used 

to calculate the distance that wheels have travelled.  The 

percentage ratio of the calculated distance over the actual 

distance was taken as the linear error of each point.  

Following that, the average percentage error (APE) of 

each wheel and their standard deviation was calculated.  

The purpose of rotation test was to calculate the error of 

rotation.  Four tests were conducted for left turning and 

four for right turning and the average percentage error of 

each wheels rotation and their standard deviation were 

calculated.  Once the errors associated with both the 

linear travel and rotation were established; the offset 

compensation value was also calculated.  

3  Results and discussion 

3.1  Linear error tests 

In order to establish the accuracy of the odometers in 

a straight line, a series of 8 linear motion tests were 

performed.  The linear error tests results of three type 

ground were shown in Table 1.    

According to the two-way analysis of variance 

(ANOVA), the difference between the ground surfaces is 

very significant APE (p=0.002＜0.01); The difference 

between the wheels is very significant APE (p=0.002＜
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0.05).  No significant difference in SD between different 

ground surfaces (p=0.12＞0.05); No significant difference 

in SD between different wheels (p=0.789＞0.05). 
 

Table 1  Errors results from one meter tests 

Wheel 

Carpet surfaces Concrete surfaces Sawdust surfaces 

APE/%
*
 SD

**
 APE/% SD APE/% SD 

Right Front −6.9008 0.4092 −4.3225 0.6224 −6.5423 1.0031 

Right Back −4.9490 0.8936 −2.1005 0.3384 −7.3697 0.7441 

Left Front −8.0481 0.6602 −5.3043 0.4490 −8.4178 1.1593 

Left Back −6.6576 0.7946 −4.5070 0.3378 −9.3750 0.5259 

Note: * APE = Average Percentage Error; **SD = Standard deviation; n=8. 
 

It is evident from the results presented in Table 1 that 

when the robot vehicle was driven to move along a 

straight line, all the average percentages errors were 

between 5% and 10% with standard deviations below 1%.  

On the carpet surface, the front wheels’ APEs were larger 

than the two back wheels’.  The right two wheels’ APE 

was also smaller than the corresponding two left wheels’.  

On the concrete surface, just like on the carpet surface the 

front wheels’ APEs were larger than the two back 

wheels’.  

There are three reasons of this situation.  First, the 

robot’s mass was not equally distributed across its area. 

Due to the position of computer mountings, batteries etc, 

and the majority of mass was in the back third of the 

machine.  Measurements showed that the centre of mass 

was 120 mm from the back of the machine as overall 

length of 270 mm.  Thus, two back wheels supported 

55.56% of the robot’s weight.  Therefore, the backend 

was more stable than the frontend while the robot moved.  

Second, subjective measurement errors were associated 

with the measured distances.  Third, the robot was 

driven by manual operation, and the two left wheels 

driver signal were not necessarily always the same as the 

two right wheels’.  Therefore, there was probably some 

difference of the two side wheels movement distance. 

On the sawdust surface the two front wheels’ APE 

were smaller than the two back wheels’ APE.  Both of 

APEs and SDs were the largest of all test measurements. 

These errors were markedly larger than the APEs 

measured on carpet and concrete surfaces.  

The reason of this situation except for the reasons 

described as on the carpet ground and concrete ground 

above, also include a main reason regarding the 

characteristic of ground.  Due to the sawdust surfaces 

being loosely packed, the wheels piled sawdust under the 

vehicle.  When the robot moved on the loose surfaces, 

the wheels would spin freely.  The resistance to the front 

wheels from the sawdust was larger than that on the back 

wheels.  So the odometers data were not accurate, the 

front wheels’ APE and SD were larger. 

To improve the linear errors and ensure the accuracy, 

we should address several aspects:  (1) Try to make the 

vehicle mass uniform, when we design and make a robot 

vehicle;  (2) Try to find a suitable firm degree and plane 

surfaces for the experiment situation;  (3) Try to adjust 

and ensure the vehicle chassis four wheels touch the 

surfaces on average;  (4) Try to reduce subjective 

measurement error and improve the artificial 

measurement accuracy;  (5) Write the autonomous 

programme to control the vehicle moving, reduce the 

difference between the left drive motors and the right 

drive motors drive signal of manual control. 

3.2  Rotation error tests 

A similar series of tests were conducted on the robot 

undergoing rotation.  The actual rotation was 180 

degrees and four tests were conducted for left turn and 

four for right turn.  The rotation error tests results of 

three type ground were shown in Table 2.  
 

Table 2  Errors results for rotation tests 

Wheel 

Carpet surfaces Concrete surfaces Sawdust surfaces 

APE/%* SD ** APE/% SD APE/% SD 

Right turning 7.242 0.8282 3.5179 1.9034 ---- ---- 

Left turning 1.7076 2.2458 0.6619 0.7965 ---- ---- 

Note: * APE = Average Percentage Error; **SD = Standard Deviation; n=4. 
 

According to the two-way ANOVA analysis, there 

was no significant difference in APE (p=0.326＞0.05) and 

SD (p=0.906 ＞ 0.05) obtained from different ground 

surfaces.  There was no significant difference between 

the different wheels of APE (p=0.197＞0.05) and SD 

(p=0.992＞0.05). 

From the Table 2, on the carpet and concrete surfaces, 

the APE and SD of rotation tests is very different.  The 

right and left turning errors are quite different as the right 

turning APEs are larger than the left turning APEs.  

However, it seems that the turning errors were always 

large and the high SDs indicate that the error 

measurements were not always reliable.  
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There are potentially a number of reasons for these 

results.  First, as the robotic vehicle was dependent on 

skid steering, the rotation error might change based on 

varying friction provided by the different surfaces.  

Second, the odometers output pulse might produce larger 

rotation error compared to the actual rotation in skid 

steering process.  Third, if the ground surfaces were 

rough, (even if the left and right wheels were aligned), the 

four wheels would not move in harmony and thus the 

wheels that are in contact with the terrain would have 

inconsistent coherence forces.  Thus, the odometers’ 

input pulse will register larger error than the actual 

movement. 

The rotational error tests were not conducted on the 

sawdust surface (Table 2) because the sawdust was so 

loose that the robotic vehicle was unable to execute the 

turning properly.  The wheels would pile sawdust under 

the machine, lifting it and causing the wheels to spin 

freely.  Only by applying extra power was it possible to 

extricate the robot.  This problem rendered the turning 

odometer data highly inaccurate and made the test too 

inaccurate to be of any use.  

Potential ways of improving the rotation errors to 

ensure higher localisation accuracy would be (1) to use 

the robot only on firm surfaces that would reduce the slip 

error of skid steering rotation (but this would reduce the 

usability of the robot in livestock buildings); (2) to 

regulate the left and right wheels’ axes, ensure that the 

four wheels contact the floor uniformly; (3) to ensure 

even roughness of the floor.  

3.4  Path tests 

Four different paths tests were designed.  Three of 

them were loop path and the tests were conducted on 

carpet surface, concrete surface, sawdust surface, 

respectively.  One path was the zigzag path on concrete 

surface.  The odometers data were recovered from the 

robot computer after each test and the moving trajectory 

was calculated in Matlab7.0 software (MathWorks, 

Massachusetts, USA).  After incorporation of the error 

and offset compensation, the corrections yielded a more 

accurate plot.  The ODR calculated path, the ground 

truth measured position, and the KFDF fusion calculated 

path are presented in Figure 4 to illustrate accuracy. 

In Figures 4a, and 4b, the difference between ODR 

calculated, OGDR calculated, KFDF calculated, and 

ground true paths is shown on the carpet surface.  

Initially the first straight line of the ground truth path is 

high overlapping with the ODR calculated path, but on 

the first corner of turning, the heading angle deviated and 

thus the subsequent paths did not overlap.  After the 

second corner of turning, the heading angle bias was even 

larger.  It appears that gyroscope calculated (OGDR) 

path (Figure 4a) was much closer to the actual path on the 

carpet surface, but after turning twice, the heading angel 

had a larger deviation.  The fusion calculated (KFDF) 

path (Figure 4b) was closer to the measured ground path, 

especially, when the heading angel was close 90°.  The 

main reason for this difference is the accuracy of heading 

angle calculation.  The heading angle calculated by 

using the odometers’ data has a larger bias compared to 

the heading angle calculated based on the gyroscope data 

(OGDR and KFDF).  Therefore, the turning angle will 

be larger in ODR calculated path.  

Similar picture emerged on the concrete surface 

(Figures 4c and 4d).  While the ODR calculated path on 

concrete was marginally better, (i.e. more accurate) than 

the ODR calculated path on carpet; there were still 

significant inaccuracies associated with the heading angle 

calculation.  Evidently, the harder concrete surface 

allowed the robot vehicle to turn sharply around the 

corners of the predetermined path by providing a better 

grip for the wheels and thus reducing slippage.  

Interestingly on concrete (Figure 4c) the OGDR 

calculated path had a higher rate of error when compared 

to the ODR calculated path (Figure 4d).  One possible 

explanation for this is the fact that systems that rely on 

gyroscope data will produce larger error when robots 

move on surfaces that cause excess vibration.  During 

this study, the gyroscope was fixed on the robot vehicle 

rigidly.  When skid-steered robotic vehicles move on 

surfaces that have sufficiently large coefficient of friction; 

these vehicles will produce larger vibrations and thus 

gyroscopes will produce a fluctuation error.  When such 

fluctuating error is integrated, a sufficiently large heading 

angle error might be produced.  However, further studies 

are needed to confirm the validity of this hypothesis.   
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a. OGDR calculated path on carpet  b. ODR & KFDF calculated path on carpet 

 
c. OGDR calculated path on concrete  d. ODR & KFDF calculated path on concrete 

 
e. OGDR calculated path on sawdust  f. ODR & KFDF calculated path on sawdust 

                  
g.The Zigzag test field  h.ODR & KFDF calculated of Zigzag path 

 

Figure 4   Ground truth and calculated positions for the four tests 
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The fusion (KFDF) calculated path on concrete 

surface (Figure 4d) showed that the heading angel error 

was calculated better, each turning angel was near 90°.  

On sawdust (Figures 4e and 4f) the localisation error 

calculated by ODR was even larger than localisation 

errors demonstrated during the previous two trials.  

While the utilisation of gyroscope data (OGDR, KFDF) 

markedly reduced localisation errors; the loose surface of 

sawdust made robot localisation (using either ODR or 

OGDR, KFDF methods) practically unusable.  When the 

robot followed the zigzag path (Figure 4g) slowly on 

concrete surface, the localisation error calculated by ODR 

(Figure 4h) was accumulated after two turning. However, 

the KFDF calculated path estimate showed a more 

accurate heading angel estimate.  Overall, these 

experiments demonstrated that KFDF method could 

potentially reduce the heading angel error estimate.  

4  Conclusions and suggestion 

Over the course of numerous tests, it was apparent 

that the inertial sensors could not, on their own, calculate 

the robot’s position with practical accuracy.  This is 

especially noticeable when only odometers are used.  

However, after combining the odometers with the rate 

gyroscope, a more accurate localisation estimate was 

possible. Using the Kalman filter algorithm, the heading 

angel estimation was improved.  In both cases, 

localisation accuracy was heavily influenced by the 

terrain composition.  

4.1  Odometers only 

Due to the inherent constraints of the system tested 

and the odometers used, these study results demonstrated 

that odometer-based dead reckoning was associated with 

both systematic and non-systematic errors resulting in a 

less localisation accuracy when used without supporting 

sensors.  The research team assumed that the robot 

vehicle used was symmetric and its geometric centre 

would be overlapping with the centre of gravity.  In 

addition, it was assumed that the four wheels had the 

same fixed size and turning rate, which was evidently not 

the case during this study.  Thus, system errors were 

neglected.  

After analysing the rotation test data, it was found that  

the average percentage errors were not large, but the 

standard deviation was significant.  Therefore using the 

odometric data only to calculate the heading angle could 

create inaccurate or inconsistent results.  On the firmer 

surfaces (concrete and carpet), the odometer-based dead 

reckoning was more accurate in comparison with the 

loose surfaces (Figures 4b, 4d, 4f and 4h).  Thus, 

localisation accuracy was closely related to surface 

cohesion.  However, it can be concluded that using the 

odometer calculations alone, the heading angle 

calculation had very large errors on all surfaces. 

4.2  Rate gyroscope and odometers 

It was obvious from the results that method of using 

the gyroscope data to calculate the heading angle was 

more accurate than the method that was based on only the 

odometer data.  However, the study results demonstrated 

that this method might be prone to additional errors 

caused by vibration on certain surfaces, such as concrete.  

Generally, it was concluded that using gyroscope data to 

calculate the heading angle created a smaller error than 

using the heading angle calculated from the odometers 

(Figures 4a and 4e) reading alone.  However, on 

concrete (Figure 4c) gyroscope based localisation created 

a larger error possibly due to vibration or due to the 

gyroscope drift.  

4.3  Data fusion  

The results (Figures 4b, 4d, 4f and 4h) demonstrated 

that an improved heading estimate was achieved during 

the path tests, after the Kalman filter data fusion (KFDF) 

was applied, which combined the rate gyroscope heading 

angel and odometers heading angel information.  The 

KFDF method improved the calculated heading angel 

accuracy, as it corrected the heading angel deviation to 

ensure that the heading angel was closer to the direction 

of the robot body (Figures 4b, 4d and 4h).  Especially, in 

the case of larger gyroscope data drift (Figure 4d), the 

calculated heading angle tracked the true heading angle 

well, improving localisation accuracy.  

4.4  Effect of ground type on slip steer and 

localization 

Different surfaces produce different non-systematic 

errors and loose surfaces tend to produce greater amounts 

of non-systematic errors compared to hard surfaces. 
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Using the gyroscope data to calculate the heading angle 

(ODGR, KFDF) is a better solution than only using 

odometer data, when the vehicle moved in a smooth, 

stable fashion.  Even the same surface (Figures 4d and 

4h), the different tests resulted in different accuracy of 

localisation.  This might be related to the speed of the 

mobile robot.  A lower and constant speed (Figure 4h) 

can reduce the steering slippage, so the odometers 

accumulation error might also be reduced resulting in 

better navigational accuracy.  

4.5  Suggestions 

The final goal of the robot is that it can move 

independently in the shed and collect data.  First, the 

further development of the LBG should focus on the 

localization and navigation accuracy through increasing 

the navigation sensors and navigation algorithm.  

Second, we still need to further develop the robot before 

the on-farm experiment can happen, for example, the 

robot is fitted with appropriate protective measures, such 

as special, soft ‘bumper’ bars to protect all components 

from dust and to protect the birds from the robot. 

The improvement of mobile robot localization 

accuracy might be via (1) exploring other relative 

localization methods other than dead reckoning, (2) 

employing a more complete multi-sensor data fusion, (3) 

exploring additional internal sensors (like laser range 

finder) to correct the heading error and (4) potentially by 

employing machine vision to improve localization 

accuracy.  
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