
June, 2015 Int J Agric & Biol Eng Open Access at http://www.ijabe.org Vol. 8 No.3 81

Code modernization and modularization

of APEX and SWAT watershed

simulation models

Robin A. J. Taylor1*
, Jaehak Jeong1

, Michael White2
, Jeffrey G. Arnold2

(1. Blackland Research & Extension Center, Texas A&M AgriLife Research, Temple, Texas 76502, USA;

2. Grassland Soil & Water Research Laboratory, USDA-ARS Temple, Texas 76502, USA)

Abstract: SWAT (Soil and Water Assessment Tool) and APEX (Agricultural Policy/Environmental eXtender) are respectively

large and small watershed simulation models derived from EPIC (Environmental Policy Integrated Climate), a field-scale

agroecology simulation model. All three models are coded in Fortran and have evolved over several decades. They are

widely used to analyze anthropogenic influences on soil and water quality and quantity. Much of the original Fortran code has

been retained even though Fortran has been through several cycles of development. Fortran now provides functionality

originally restricted to languages like C, designed to communicate directly with the operating system and hardware. One can

now use an object-oriented style of programming in Fortran, including inheritance, run-time polymorphism and overloading.

In order to enhance their utility in research and policy-making, the models are undergoing a major revision to use some of the

new Fortran features. With these new programming paradigms the developers of SWAT, APEX, and EPIC are working to

make communication between the two models seamless. This paper describes the ongoing revision of these models that will

make them easier to use, maintain, modify and document. It is intended that they will converge as they continue to evolution,

while maintaining their distinctive features, capabilities and identities.

Keywords: code modernization, modularization, object-oriented programming, Fortran 2008, landscape-scale models, APEX,

EPIC, SWAT

DOI: 10.3965/j.ijabe.20150803.1081 Online first on [2015-03-03]

Citation: Taylor R A J, Jeong J, White M, Arnold J G. Code modernization and modularization of APEX and SWAT

watershed simulation models. Int J Agric & Biol Eng, 2015; 8(3): 81－94.

1 Introduction

FORTRAN, an acronym from FORmula TRANslating

Received date: 2014-02-14 Accepted date: 2014-10-18

Biographies: Jaehak Jeong, PhD, Assistant Professor. Research

interests: environmental and water resources engineering and

modeling. Blackland Research & Extension Center, Texas A&M

University, 720 East Blackland Road, Temple, Texas 76502, USA.

Email: jjeong@ brc.tamus.edu; +1-254-774-6118. Michael

White, PhD, Agricultural Engineer. Research interests: biosystems

engineering. Grassland Soil & Water Research Laboratory,

USDA-ARS, 808 East Blackland Road, Temple, Texas 76502,

USA. Email: mike.white@ars.usda.gov; +1-254-770-6523.

Jeffrey G. Arnold, PhD, Agricultural Engineer. Research interests:

hydrologic and water quality modelling. Grassland Soil & Water

Research Laboratory, USDA-ARS, 808 East Blackland Road,

Temple, Texas 76502, USA. Email: jeff.arnold@ars.usda.gov;

+1-254-931-4010.

*Corresponding author: Robin A. J. Taylor, PhD, Senior

Research Scientist. Research interests: systems ecology and

modelling. Blackland Research & Extension Center, Texas A&M

University, 720 East Blackland Road, Temple, Texas 76502, USA.

Email: rtaylor@brc.tamus.edu; Phone: +1-254-774-6122.

and now called Fortran, has been in use for 60 years since

its public release by IBM in 1954 to translate scientific

equations into computer code
[1]

. There are many

millions of lines of Fortran code in daily use throughout

the scientific and engineering communities. It is the

primary language for some of the most intensive

supercomputing tasks, such as astronomy, weather and

climate modeling, structural engineering, computational

physics, fluid dynamics, chemistry, economics, animal

and plant breeding, and hydrological modeling. At the

time Dr. Jimmy Williams started working on the

field-scale model, EPIC (Erosion Productivity Impact

Calculator) in the late 1970s
[2-4]

, Fortran was essentially

the only high level mathematically oriented computer

language, and of course EPIC was written in Fortran.

EPIC evolved over the next decade and was renamed

Environmental Policy Integrated Climate
[5-7]

.

Subsequently two spatially-explicit models, APEX

82 June, 2015 Int J Agric & Biol Eng Open Access at http://www.ijabe.org Vol. 8 No.3

(Agricultural Policy/Environmental eXtender) and SWAT

(Soil and Water Assessment Tool), were developed using

many of Williams’ EPIC algorithms.

The APEX is a multi-field landscape model that

essentially models multiple georeferenced EPIC fields

within a watershed
[4,6-8]

. The Soil and Water

Assessment Tool (SWAT) is a model for simulating large

basins
[6,9,10]

. Where APEX models details of farming

and land-use practices in small- to medium-sized

watersheds up to about 10 000 km
2
, SWAT sacrifices

agricultural detail in order to simulate very large river

networks of 100 s of thousands of km
2
. Thus, EPIC,

APEX and SWAT form a continuum of models
[6]

 with

EPIC simulating the evolution of a point in space

(typically a single field) through time, while APEX and

SWAT are explicitly spatially distributed, permitting

simulations across an entire landscape. Despite these

differences, and differing input and output structures, all

three models have very similar internal organization.

They are process-based simulation models that can be

used either deductively to derive specific results or

inductively to obtain general results. Thus, they can

function tactically to solve an immediate problem, or

strategically to investigate concepts and seek predictions

that may be tested by new observation or experiment.

All three models are used around the world for

environmental and conservation assessments
[6,8,10-13]

. In

addition, APEX and SWAT are important components of

USDA-Natural Resource Conservation Service in

national Conservation Effects Assessment Program

(CEAP) which assesses the efficacy of NRCS soil and

water conservation programs and contributes to USDA

conservation policy
[14,15]

.

Both EPIC and APEX operate on a daily time step,

although some processes are computed more frequently.

SWAT is also primarily applied using a daily time step

although the model can be executed with sub-hourly time

steps as described by Jeong and colleagues
[16,17]

.

Weather data drive the models, while the agricultural

management schedules together with weather modify the

simulated environments, including water, soil and plant

growth. Although there are some differences, the

landscape in APEX and SWAT is divided into

georeferenced subareas with homogeneous slope, soil,

weather and management practices; SWAT subareas or

subbasins are more finely divided into non-georeferenced

areas called Hydrologic Response Units (HRUs) that may

differ in some other characteristics. The models

comprise a set of nested loops that are executed annually,

daily, by subarea (APEX and SWAT), HRU and

sub-daily (SWAT only). Properties of the HRUs,

subareas and soil layers are maintained in a set of vectors

and arrays that are updated daily and output at

programmed intervals: daily, monthly and/or yearly.

The models are constantly being refined with new

algorithms added as required by USDA and other model

users. The broad nature of these models cover many

aspects of the environment; development of model

routines requires not just programming skills but

extensive knowledge of meteorology, soil chemistry and

physics, limnology, hydrology, plant physiology,

climatology and instream dynamics. Few people

possess more than a couple of these knowledge sets,

limiting the number of interested users able to make

substantive contributions. Simplification and

modularization of model code and reduced

documentation overhead would allow the pace of model

development to be accelerated by allowing researchers to

concentrate on their specialization without the need for a

detailed knowledge of the entire model code. In

addition, the newer features of Fortran enable economical

recoding of large parts of the models, which translate to

greater efficiency and execution speed. The objective of

this paper is to present the changes to SWAT, APEX and

EPIC, we are making that will make them more useful

research and policy tools. To this end, we will

demonstrate how the new object-oriented functionality in

Fortran will improve model structure and ultimately

facilitate modifications and maintenance. The revision

of SWAT, APEX and EPIC code is also intended to bring

the models’ input and output into a common form to

facilitate communication between the models and to

permit them to use the same databases. This will greatly

facilitate their use in conjunction with one another.

In this paper, we present code and logic of features

already implemented, currently being developed, and in

June, 2015 Taylor R A J, et al. Code modernization and modularization of APEX and SWAT Vol. 8 No.3 83

the planning stage. Actual code segments are presented

in code boxes regardless of their development status in

order to illustrate the new programing paradigms being

incorporated into the models. The task of revision was

started first with SWAT; consequently, more of the

features we describe here are already incorporated into

SWAT than either EPIC or APEX. We start with an

overview of the modern Fortran language and its history,

and proceed by describing the features that have been

applied to the models and conclude with features still in

the planning or early implementation stage.

2 The modern Fortran language

Fortran is a procedural, imperative, compiled language

with syntax designed for efficient numeric processing that

is highly efficient for processing data in arrays or

requiring many iterations. Originally developed by IBM

in 1952 and formally released in 1954, Fortran has

evolved to include extensions to the language while

usually retaining backward compatibility facilitating the

maintenance of big simulation models (Table 1). As a

result, Fortran continues to be the language of choice for

high performance numeric processing. Successive

versions have added support for abstract data types and

dynamic data structures, enabling object-oriented and

parallel programming paradigms.

Table 1 A brief history of Fortran

Year Name Features

1952 FORTRAN
IBM developed the Mathematical Formula Translating

System

1954 FORTRAN IBM released FORTRAN to users

1958
FORTRAN

II & III

Procedural programming introduced: CALL,

SUBROUTINE, FUNCTION, RETURN

1961 FORTRAN IV Boolean expressions introduced

1966 FORTRAN 66 COMMON memory introduced

1977 FORTRAN 77 Block structures introduced: IF, THEN, ELSE

1991 Fortran 90

Recursion, Pointers, Dynamic memory (ALLOCATE),
Operator overloading (INTERFACE), Derived

(structured) data types (TYPE), Structured multi way

selection (SELECT CASE) introduced from the C

language.

1995 Fortran 95 Incremental revision to Fortran 90

2003 Fortran 2003
Inheritance & Procedure pointers introduced; seamless

interoperability with C/C++

2008 Fortran 2008
Incremental revision to Fortran 2003; enhanced parallel

processing features added

A few features have been deprecated (declared

obsolescent in standard Fortran) but are retained for

backward compatibility by many compliers (e.g. Intel®

Fortran). Examples of obsolescent statements that we

have removed include the ENTRY, computed GOTO,

and arithmetic IF statements. Other obsolescent

statements that retain some values in certain

circumstances are statement functions,

CHARACTER*(*), DATA, and unconditional GOTO

statements. The concept of the MODULE for

specifying and limiting the scope of variables while

valuable in most applications has limited value in many

models where large bodies of data need to be globally

available. An important feature of the MODULE

statement is it enforces object-oriented programming

habits, although MODULEs are not necessary to develop

object-oriented programs.

The goals of object-oriented programming are

increased understanding, ease of maintenance, and ease

of evolution. It is a programming approach for

constructing modular reusable software systems and is a

formalization of good design practices that go back to the

earliest days of computer coding. Rather than structure

program code and data separately, an object-oriented

system integrates the two using the concept of an “object”.

An object has state (data) and behavior (code). A

common source of errors in programs occurs when one

part of the system accidentally interferes with another

part. This is avoided by creating modular objects which

manage their own data and are responsible for their own

behavior. This feature, known as encapsulation avoids

accidental interference of one piece of code by another by

placing data where they are not directly accessible by the

rest of the system. Instead, the data are accessed by

calling specially written functions, called “methods”.

These act as the intermediaries for retrieving or

modifying the data they control. The object's methods

typically include checks and safeguards specific to the

data types the object contains.

Alterations can be made to the methods of an object

without requiring that the rest of the program be modified.

For example, three different objects might provide

methods for printing their data, with each object

executing a print method tailored to a different kind of

data (INTEGER, REAL, or DOUBLE PRECISION), but

the methods are all called by a uniform statement (CALL

http://en.wikipedia.org/wiki/Method_%28computer_science%29

84 June, 2015 Int J Agric & Biol Eng Open Access at http://www.ijabe.org Vol. 8 No.3

Output (Argument)) so that program code does not need

to be modified in order accommodate a new data type

(e.g., COMPLEX). Object-oriented programming

practices become especially useful when more than one

programmer is contributing code to a project; a common

occurrence with EPIC/APEX/SWAT. Thus, one

objective in recoding these models is to facilitate

cooperation with other developers interested in using

these models’ framework to solve other environmental or

policy problems.

A number of large models with which we are familiar

have undergone or are undergoing transformation to this

object-oriented style of programming. For example, the

plant growth models comprising Decision Support

System for Agrotechnology Transfer (DSSAT)
[18,19]

, the

groundwater simulation model MODFLOW
[20]

 and the

Object Modeling System (OMS)
[21]

 modeling

environment utilize these newer programming features by

wrapping Fortran subprograms in object-oriented Java

wrappers. The reconstructed DSSAT plant growth

models use a modular structure developed by van

Kraalingen
[22]

 in which the same routines for computing

soil water, soil nitrogen, weather, and sensitivity analysis

are used by all plant growth models. Furthermore, the

plant growth models are all driven by the same control

program and conform to the same data standards and

protocols for input and output. One objective of

reconstructing EPIC, APEX and SWAT is to make their

input and output procedures conform to the same rules or

methods so that the models can access data from the same

databases and output tables readable by the same post

processor or dashboard. Another incentive for

modularization is to be able to execute selected portions

of a watershed routing structure in both APEX and

SWAT. This ability will profoundly improve our ability

to accurately represent natural systems with our models.

As some of Fortran’s newer features borrowed from C

and C++, may be unfamiliar to users and modifiers of

these models, it is worth describing some of them before

examining their application in EPIC/APEX/SWAT.

There are six important features which have been

introduced over the past two decades (refer to [1], [23],

and [24] for details):

(1) When Fortran was first defined, the sizes of

vectors and arrays needed to be declared at the beginning

of the program segment to reserve memory at compile

time for use in execution. With the introduction of

dynamic memory, space for vectors and arrays no longer

need to be reserved at compile time but can be created

during execution. Thus, the size of the problem

determines the size of memory to be used rather than the

size of memory determining the size of the problem.

Dynamic memory allocation has been implemented in all

three models where appropriate. In those (rare)

situations where dynamic allocation cannot be used,

variables may be declared as pointers (see below) in

labelled COMMON.

(2) Inheritance is a way to establish relationships

between objects defined by classes, such that a new or

derived class can inherit attributes and behavior from a

pre-existing class. The relationship of classes through

inheritance gives rise to a hierarchy. This has a use in

EPIC/APEX/SWAT for output handling when averages

over different variables or periods may be required.

Inheritance has not been implemented, but is likely to

become useful as we develop closer linkages between

SWAT and APEX.

(3) Polymorphism is a language feature that allows

values of different data types or functions to be handled

using a uniform interface. Polymorphic functions may

be created to operate on real and integer data, or to extend

the precision of a function with 4, 8 or 16 bytes. A

special case of polymorphism is operator overloading

where an arithmetic operator (+, -, *, / or **) can be given

special meaning via an INTERFACE statement or can

have different implementations depending on the type of

argument(s) in a CALL statement. For example, + (plus)

is normally a binary operator (it adds two numbers), but

can be redefined as a matrix operator adding two vectors

or arrays. Since Fortran 90, simple matrix operations

are possible using arithmetic operators; for example,

element by element addition, subtraction, multiplication

and division. With numeric applications the value of

polymorphic overloading is the ability to create new

arithmetic operators to evaluate equations or transforms.

Polymorphism and overloading are being incorporated

June, 2015 Taylor R A J, et al. Code modernization and modularization of APEX and SWAT Vol. 8 No.3 85

into EPIC on a trial basis.

(4) Structures and abstract data types enable the

storage and organization of a variety of different data

types in a single efficient record. The elements of a

record are usually called fields or members and are

functionally equivalent to the fields of a relational

database. Records are distinguished from arrays by

having fields of different types. The classic example is

the Personnel Record that contains fields for name

(character variable), rank (integer variable), and salary of

employees (real variable). A collection of records can

be organized as an array with an index identifying each

entry. Abstract data structures have great value in

EPIC/APEX/SWAT as they allow variables, such as

nutrients loading and sediment in water to be defined as

properties of the watershed subarea. The subarea thus

becomes the computational unit and, combined with

operator overloading, arithmetic can be conducted on the

watershed as a unit. All three models now use abstract

data types to some degree and their use will expand as

revision continues.

(5) Pointers are a data type that point to locations in

memory containing data. Thus a pointer’s value is not

program data but an address pointing to program data.

Pointers to data significantly improve performance for

repetitive actions. In particular, it is often much cheaper

in time and space to copy and use a pointer than it is to

copy and access the data to which the pointers point. It

should be noted that the ease with which pointers can be

misapplied is directly proportional to their power. To

avoid instability, it is vital that a strict protocol for

creating and destroying pointers is rigidly adhered to,

especially in a multi-programmer environment. Fortran

subprogram arguments have always been pointers,

contributing to the language’s speed and efficiency.

Pointers are being used in SWAT and EPIC, and planned

for APEX.

(6) Recursion is a computational operation in which a

process (a function or subroutine) can call itself. A key

feature of recursion is self-similarity, in which a function

is defined as a similar version of itself. The classic

example is the definition of the factorial function:

1

!
N

n

N n

where, the function calls itself recursively to multiply N

by (N − 1), decrementing N by 1 at each step, until N = 1.

The great advantage of recursion is that an infinite set of

possible operations on data can be defined or produced by

a finite computer program. Another advantage of

recursion in an algorithm is its simplicity. However, it

has the disadvantage that the algorithm may require large

amounts of memory if the depth of the recursion is very

large, as the amount of memory grows geometrically with

depth. So far recursion has not been incorporated into

any model; the planned implementation for APEX is

presented.

Combining these features provides for powerful new

programming paradigms:

(1) By combining derived types with pointers, linked

lists may be created permitting the storage in memory of

relational databases and nested data structures permitting

rapid access times. In a relational database each

individual record is represented as a row, and each

attribute as a column. One or more columns identify the

entry as coordinates in a space of n-dimensions (n≥1).

The remaining columns hold the data or attributes of the

point defined by the coordinates. This is an example of

one-to-one relationship between coordinates and data.

In a one-to-many relationship, the data are nested or

hierarchical and organized into a tree-like structure as

described below. The structure allows information to be

represented in a parent/child relationship: each parent can

have many children, but each child has only one parent.

Parents and children are tied together by pointers. Thus,

a parent will have a list of pointers to each of its children.

Linked lists have been incorporated into EPIC and are

being tested in SWAT.

(2) Combining derived types with operator

overloading enables arithmetic to be performed on entries

in relational databases and nested data structures using

purpose-built operators. Thus, operations are

programmed such that the records are operated on as a set

in a linear algebra-like way. Operator overloading is

being planned for APEX.

(3) The combination of dynamic memory and

http://en.wikipedia.org/wiki/Tree_data_structure

86 June, 2015 Int J Agric & Biol Eng Open Access at http://www.ijabe.org Vol. 8 No.3

recursion enables arithmetic to be performed on nested or

hierarchical data structures using multiple instances of a

single function or subroutine. This is a very powerful

feature enabling complicated processes to be addressed

by a single, simple executable statement. The proposed

implementation for APEX is presented.

At this time the recoding status is as follows: SWAT

is most advanced and APEX least, with EPIC in between.

None of the recoded models have been released for beta

testing.

3 Applying the new Fortran

Until recently, the current construction of the three

models was built around fixed dimension arrays as shown

in Box 1. In this construction, vectors and arrays, for

example those describing soil properties were

dimensioned at compile time with explicit DIMENSION

statements. By using allocatable arrays, the soil arrays

can be dimensioned at execution time according to the

number of soils and layers in the primary database. In

place of explicitly dimensioning the arrays, they are given

the attribute ALLOCATABLE, and the dimensioning is

deferred until the required size has been read in or

computed as seen in Box 2.

Box 1 Declared data arrays - A vector or array for every soil

property dimensioned for a maximum number of soil types and

layers using PARAMETER statements

INTEGER, PARAMETER :: $NST = 100 ! Maximum

number of soil types

INTEGER, PARAMETER :: $NSL = 15 ! Maximum

number of soil layers

!

COMMON /SOILS/ SALB($NST), HSG($NST), FFC($NST),

WTMN($NST), WTMX($NST), WTBL($NST), GWST($NST),

GWMX($NST), RFTT($NST), RFPK($NST), TSLA($NST),

XIDS($NST), RTN1($NST), XIDK($NST), ZQT($NST),

ZF($NST), ZTK($NST), FBM($NST), FHP($NST), Z($NST,

$NSL), BD($NST, $NSL), UW($NST, $NSL), FC($NST,

$NSL), SAN($NST, $NSL), SIL($NST, $NSL), WON($NST,

$NSL), PH($NST, $NSL), SMB($NST, $NSL), WOC($NST,

$NSL), CAC($NST, $NSL), CEC($NST, $NSL), ROK($NST,

$NSL), CNDS($NST, $NSL), SSF($NST, $NSL), RSD($NST,

$NSL), BDD($NST, $NSL), PSP($NST, $NSL), SATC($NST,

$NSL), HCL($NST, $NSL), WPO($NST, $NSL), EXCK($NST,

$NSL), ECND($NST, $NSL), STFR($NST, $NSL), ST($NST,

$NSL), CPRV($NST, $NSL), CPRH($NST, $NSL),

WLS($NST, $NSL), WLM($NST, $NSL), WLSL($NST, $NSL),

WLSC($NST, $NSL), WLMC($NST, $NSL), WLSLC($NST,

$NSL), WLSLNC ($NST, $NSL), WBMC($NST, $NSL),

WHSC($NST, $NSL), WHPC($NST, $NSL), WLSN($NST,

$NSL), WLMN($NST, $NSL), WBMN($NST, $NSL),

WHSN($NST, $NSL), WHPN($NST, $NSL)

Box 2 Dynamic memory allocation - Runtime creation of

arrays with the ALLOCATABLE attribute still requires every

variable to be individually declared and dimensioned

! Soil property vectors made allocatable for later allocation

 REAL*4, ALLOCATABLE :: SALB(:), HSG(:), FFC(:), & .

 .

 etc.

 .

 Z(:,:),SAN(:,:),SIL(:,:),BD(:,:),UW(:,:),FC(:,:)&

 .

 etc.

 .

 WBMN(:,:),WHSN(:,:),WHPN(:,:)

 .

 .

 .

 NST = 100 ! Number of soil types defined in

 ! code or as input

 NSL = 15 ! Number of soil layers defined in

 ! code or as input

 .

 .

 .

! Allocate memory for the soil property arrays

!

 ALLOCATE (SALB(NST), HSG(NST), FFC(NST),&

 STAT=Ierr)

 ALLOCATE (Z(NST, NSL), SAN(NST, NSL), &

 SIL(NST, NSL), STAT=Ierr)

!

 RETURN

 END

 COMMON /SOILS/ Soil ! labeled COMMON

 ! for speed & efficiency

A further enhancement to data storage is the concept

of the derived type or data structure. In EPIC/APEX/

SWAT there are both static and dynamic data that

comprise manifold properties. The soil vectors in the

above examples are read in initially and then evolve as

the simulation progresses. Weather, crops and

management practices all impact the soil composition of a

subarea. Collecting them together in a data structure as

in Box 3 eliminates the need to dimension every property

separately (whether by declaration or by allocation).

There is just one structure per soil. A vector of soil

structures with all their properties is dynamically

allocated in each instance of the model. An alternative

to allocating a vector of structures is shown in Box 4.

Here we create a linked list to simulate a database; each

soil has a pointer called Next that points to the next entry

in the database. In this construction, we have also made

the soil LAYERS component of the SOILS structure a

pointer so the vector of LAYERS structures can be

specified by reading the number of layers from the

external database during execution.

June, 2015 Taylor R A J, et al. Code modernization and modularization of APEX and SWAT Vol. 8 No.3 87

Box 3 Derived data types – Soil properties are collected

together in data structures. 43 global properties and 20 layer

properties contained in a single variable can be addressed

individually or collectively by structure name. In this form,

the number of soil layers is dimensioned explicitly using a

PARAMETER statement

 INTEGER, PARAMETER :: $NSL = 15

 ! Maximum number of soil layers

!

 TYPE LAYERS ! Soil layer properties in a derived type

 REAL*4 Z ! Depth to bottom of layers (m)

 REAL*4 PH ! Soil pH

 REAL*4 SAN ! Fraction of sand (%)

 REAL*4 SIL ! Fraction of silt (%)

 .

 etc.

 .

 REAL*4 CAC ! Calcium carbonate concentration (%)

 END TYPE LAYERS

!

 TYPE SOILS ! Soil properties defined in a derived type

 REAL*4 SALB ! Soil albedo

 REAL*4 HSG ! Hydrologic soil group

 ! (1=A; 2=B; 3=C; 4=D)

 REAL*4 FFC ! Fraction of field capacity for water storage

 .

 etc.

 .

 REAL*4 FHP ! Fraction of humus in passive pool

 TYPE(LAYERS) Layer($NSL) ! TYPE LAYERS a

 ! vector property of TYPE SOILS

 END TYPE SOILS

!

 TYPE(SOILS), POINTER :: Soil(:) ! TYPE SOILS is

 ! allocatable and placed in COMMON

Box 4 Combining derived data types and pointers to create a

soils database in a linked list. The layers sub-structure is also

created as a linked list enabling dynamic dimensioning of these

variables also

TYPE SOILS

 INTEGER ID

 CHARACTER*32 Name

 UNION

 MAP

 REAL*4 Global(19) ! Vector equivalenced to 19 properties

END MAP

 MAP

 REAL*4 SALB ! Soil albedo

 REAL*4 HSG ! Hydrologic soil group (1=A; 2=B;

 ! 3=C; 4=D)

 .

 etc.

 .

 REAL*4 FHP ! Humus passive pool fraction (0.3-0.7)

 END MAP

 END UNION

 INTEGER NSL ! Number of Soil Layers

 TYPE(LAYERS), POINTER :: Layer(:) ! Pointer to soil

 ! layer structure

 TYPE(SOILS), POINTER :: Next ! Pointer to next

 ! soil type in list

END TYPE SOILS

!

TYPE(SOILS), POINTER :: Soil(:), ThisSoil ! Linked list

 ! pointers are placed in

COMMON /SOILS/ Soil, ThisSoil ! labeled COMMON

 ! for speed & efficiency

The process of reading the external soils database is

streamlined as the organization of the soil properties is

coded into the structure (Box 5) and the internal

organization of the soils database is the same as the

external source. Additions to or subtractions from the

external database require only corresponding changes to

the structure definition; recoding of the input process is

not required. The example here reads from a flat file

defined with an OPEN statement to channel K, but the

same logic would apply with reads using calls to a

Fortran-compatible Structured Query Language (SQL) or

Open Database Connectivity (ODBC) library.

Box 5 Reading data with derived types and pointers simplifies

the code. Soil global (ThisSoil%Global) and layer

(ThisSoil%Layer) data are each read with a single statement

that does not need to be revised if the database is extended by

addition of new variables to the structures. The soils

linked-list is extended automatically with the ALLOCATE

(ThisSoil%Next) statement for each additional soil defined by a

unique identifier (ThisSoil%ID) and the number of layers

(ThisSoil%NSL). An additional variable reads the soil series

name or other text identifier (ThisSoil%Name). Any read error

terminates execution with a diagnostic to identify the problem

OPEN(UNIT=K, FILE=’Soil file.dat’, ACTION=’READ’)

 ! Open the database file

ALLOCATE(Soil) ! Allocate first soil

ThisSoil => Soil ! Point to first soil

NULLIFY(ThisSoil%Next) ! Nullify pointer to Next soil

DO WHILE(.TRUE.)

READ(K,*,END=10, ERR=99) ThisSoil%ID, ThisSoil%NSL

! Read soil series header

IF (ThisSoil%ID.EQ.0) EXIT ! Exit if all soils read

READ(K,’(A32)’, END=99, ERR=99) ThisSoil%Name

 ! Read soil series name

READ(K,*, END=99, ERR=99) ThisSoil%Global

! Read global propeties

ALLOCATE(ThisSoil%Layer (ThisSoil%NSL))

! Allocate soil layers

READ(K,*, END=99, ERR=99) ThisSoil%Layer

! Read Soil layer properties

ALLOCATE (ThisSoil%Next) ! Allocate Next soil

ThisSoil => ThisSoil%Next ! Point to Next soil

NULLIFY(ThisSoil%Next) ! Nullify Next soil pointer

ENDDO

10 CONTINUE

ThisSoil => Soil ! Point to first soil

 .

 .

99 WRITE(*,*)’Error in soil read’

The foregoing example assumes the model will read

all elements in the external database. The addition of a

filter that selects only those to be used is a trivial addition

to the code in Box 5. Similar constructions are

implemented for other databases used by the models, for

example the crop, fertilizer, and pesticide databases used

in land management. In the case of soils that evolve

88 June, 2015 Int J Agric & Biol Eng Open Access at http://www.ijabe.org Vol. 8 No.3

during the course of a simulation, copies are created and

are incorporated into the subarea as a property of the

subarea. Similarly, the weather and management

schedule are attached to each subarea. Databases that do

not change during a simulation (crops, fertilizers,

pesticides, etc.) remain separate and are accessed by each

subarea’s management schedule as the schedule is

executed, similar to the existing model structure. In

most instances, changes to the code executing a process

in the model are minor, as it is only the memory

management that has changed by the introduction of

derived types. The following example illustrates this.

Box 6 shows the original code for the subroutine that

computes the phosphorus flux between the several

phosphorus pools. Five arrays are defined in a module

called PARM (the same would be achieved by using the

INCLUDE statement for file definitions).

Box 6 Executing code with arrays. With action variables in

arrays defined in COMMON or a MODULE (BK, PSP,

WPMA, WPML, WPMS), a subroutine to compute phosphorus

flux is called with arguments (ISL, ISA) defining the variables

in the soil layer and subarea for execution

 CALL NPMIN(ISL, ISA) ! Operate on Layer ISL

 ! of soil in Subarea ISA

 .

 .

SUBROUTINE NPMIN(ISL,ISA)

!

! PROGRAM APEX0806

! SUBROUTINE NPMIN Computes phosphorus flux

! between the soluble, active mineral & stable

! mineral phosphorus pools.

!

 USE PARM ! BK, PSP, WPMA, WPML, WPMS

 ! defined in MODULE PARM

!

! Arguments

!

 INTEGER ISL ! The current layer of the subarea’s soil series

 INTEGER ISA ! The current subarea

!

 RTO = MIN(0.8, PSP(ISL, ISA)/(1.0 − PSP(ISL, ISA)))

 ! P sorption coefficient

 RMN = PRMT(84)*(WPML(ISL, ISA) − WPMA(ISL, ISA)*&

 RTO) ! Flow rate labile->active

 X1 = 4.0*WPMA(ISL,ISA) − WPMS(ISL,ISA)

 IF(X1.GT.500.) THEN ! Flow rate active->stable

 ROC = 10.0**(LOG10(BK(ISL, ISA)) + LOG10(X1))

 ELSE

 ROC = BK(ISL, ISA)*X1

 ENDIF

 ROC = PRMT(85)*ROC

 WPMS(ISL, ISA) = WPMS(ISL, ISA) + ROC ! New soluble P

 WPMA(ISL, ISA) = WPMA(ISL, ISA) − ROC + RMN

 ! New active P

WPML(ISL, ISA) = WPML(ISL, ISA) – RMN ! New labile P

!

 RETURN

 END

The call to SUBROUTINE NPMIN has arguments

specifying the subarea and the soil layer to be operated on,

ISA and ISL, respectively. These indices are used to

access data BK and PSP and update the phosphorus data

contained in arrays WPMA, WPML, and WPMS. The

corresponding code using structures and pointers as

shown in Box 7, is very similar, except that a pointer is

used to identify the soil defined in the subarea structure,

and here we are using an INCLUDE statement rather than

a USE statement to define the soil structure. As before,

the particular layer to be operated on is a scalar argument.

The only changes to the code involve specifying the

phosphorus properties as part of the soil structure which

is defined in the Fortran definition file Structures.fd.

Box 7 Executing code with derived types and pointers. The

variables for calculating phosphorus flux (bk, psp, wpma,

wpml, wpms) are elements of a structure This Soil which is an

argument to the subroutine with L defining the layer for to be

operated on. Both input and output are contained in the

structure This Soil but the logic of the subroutine remains

unchanged from the separate arrays approach

 CALL NPMIN(ThisSoil,L) ! ThisSoil points to the current

 ! subarea’s soil

 . ! L defines the layer of

 ! ThisSoil’s soil

 .

 SUBROUTINE NPMIN(Soil, L)

!

! PROGRAM APEX0806

! SUBROUTINE NPMIN - Computes phosphorus flux between

! the soluble, active mineral & stable mineral phosphorus pools.

!

 INCLUDE ‘Structures.fd’ ! TYPE(SOILS) defined in

 ! Structures.fd

!

! Arguments

!

 TYPE(SOILS) Soil ! Local variable aliased with ThisSoil

 INTEGER L ! The current soil layer

!

 RTO = MIN(0.8,Soil%psp(L)/(1.0 − Soil%psp(L)))

 ! P sorption coefficient

 RMN = PRMT(84)*(Soil%wpml(L) − Soil%wpma(L)*RTO)

 ! Flow rate labile->active

 X1 = 4.0* Soil%wpma(L) − Soil%wpms(L)

 IF (X1.GT.500.) THEN ! Flow rate active->stable

 ROC = 10.0**(LOG10(Soil%BK(L)) + LOG10(X1))

 ELSE

 ROC = Soil%bk(L)*X1

 ENDIF

 ROC = PRMT(85)*ROC

 Soil%wpms(L) = Soil%wpms(L) + ROC ! New soluble P

 Soil%wpma(L) = Soil%wpma(L) – ROC + RMN ! New active P

 Soil%wpml(L) = Soil%wpml(L) − RMN ! New labile P

!

 RETURN

 END

June, 2015 Taylor R A J, et al. Code modernization and modularization of APEX and SWAT Vol. 8 No.3 89

The farm or watershed study may involve several

fields or subareas. Each subarea is homogenous in

climate, topography, soil, and land management schedule.

Therefore, the heterogeneity of a watershed/farm is

determined by the number of subareas. Each subarea

may be linked with each other according to the water

routing direction in the watershed, starting from the most

distant subarea towards the watershed outlet. Two

network characteristics are recognized; headwaters or

extreme reaches that have only an outlet, and downstream

reaches with both an inlet and outlet. The current

algorithm uses three variables to instruct the model in the

topology of the network. Extreme (headwaters) areas in

a watershed are identified by defining the channel length

(CHL) and channel length of routing reach (RCHL) to be

the same length (CHL=RCHL). Downstream subareas

have unequal channel length and routing reach

(CHL>RCHL). Outlet data are added to the next

downstream reach until either a negative watershed area

(WSA<0) or another headwaters reach (CHL=RCHL) is

encountered when the subarea outlet data are stored. A

negative WSA indicates that stored information from a

prior subarea in the list is to be added to this subarea.

On encountering a negative WSA, the routing processor

searches back through the list of processed subareas for

one that has not been added into the network. Thus, the

order of subareas (reaches) in the subarea file is critical

for the correct routing topology.

A simple watershed with only four or five subareas is

not difficult to parameterize correctly, but a large

watershed with scores or hundreds of subareas requires a

standalone program (APSUBLDM.FOR) to create the file

describing the topology of the watershed’s subareas from

three input files. One file contains the identification

numbers of the entering and receiving subareas. Those

that flow out of the watershed have a receiving number of

0. However, some of the subareas are extreme or

headwaters areas that do not have an inflow. A number

of subarea-specific variables associated with each subarea

follow the inflow and outflow numbers. Another file

defines subarea properties including channel

characteristics, irrigation schedule, and fertilizer and/or

manure applications. The third file controls the build

process. Changes to large subarea files are fraught with

problems. Reliably combining or dividing subareas to

reduce or increase the number of reaches is extremely

difficult unless APSUBLDM.FOR is used. An

alternative method has been developed for constructing

the SWAT and APEX subarea files using an interface to

ArcInfo (® ESRI) to build the subarea file from a digital

elevation model
[25,26]

. This approach has the advantage

of being graphical enabling the user to visualize the basin

under study.

As alluded to above, the properties of a subarea

include its soil, crop(s), weather, and management

schedule. In addition, the subarea’s water balance and

chemical constituents are also properties defined in

structures that are part of the subarea property set (Box 8).

In each daily iteration of the model, subareas receive and

transmit water, sediment and chemicals requiring careful

bookkeeping in order to reliably simulate their flow

through the watershed.

Box 8 Using the concept of the derived type, subareas become

a collection of data structures containing subarea properties

(Weather, Soil, Water, Chems, Crop, Sched, Outflow). Three

pointers specify input and output subareas (Inlets, Outlet) and

the order of execution (Next)

 TYPE SUBAREA

 INTEGER IDSA ! Subarea identifier

 CHARACTER*40 Name ! Subarea name

 TYPE(WETHR) Weather ! Structure with today’s

 ! weather for subarea

 TYPE(SOILS), TARGET :: Soil ! Soil characteristics

 TYPE(WATER), TARGET :: Water ! Water balance

(above & below ground)

 TYPE(CHEMS), TARGET :: Chems ! Chemicals

 ! (C, N, P, K, metals & pesticides)

 ! (Cross-referenced with Soil & Water)

 INTEGER nCrops ! Number of crops in the

 ! management schedule

 TYPE(CROPS), POINTER :: Crop(:) ! Growth status of

 ! crop(s)

 TYPE(SCHED Sched ! Management schedule

 ! (Cross-referenced with Crop)

 TYPE(SUBAREA), POINTER :: Inlets(:) ! Pointer(s) to

 ! upstream subareas

 ! (NULL if headwater subarea)

 TYPE(SUBAREA), POINTER :: Outlet ! Pointer to

 ! receiving subarea

 ! (NULL if watershed outlet)

 TYPE(SUBAREA), POINTER :: Next ! Pointer to the

 ! next subarea for processing

 ! (NULL if watershed outlet)

 TYPE(FLOW) Outflow ! Outflow to downstream subarea

 END TYPE SUBAREA

!

 TYPE(SUBAREA), POINTER :: Subs(:), FirstSub, ThisSub

 COMMON /SUBAREA/ Subs,FirstSub

 .

 .

 ALLOCATE Subs(Site%NSA) ! Number of Subareas is a

 ! Site property

90 June, 2015 Int J Agric & Biol Eng Open Access at http://www.ijabe.org Vol. 8 No.3

Two special properties of a subarea are its upstream

and downstream neighbors which can be referenced via

pointers. Each subarea (except headwaters) receives

water, sediment and chemicals from one or more

upstream subareas and transmits water, sediment and

chemicals to a downstream subarea. Figure 1 represents

both the geographic relationship of reaches in a watershed

and the internal structure of a hierarchical linked list

(1-24). In order that daily flow generated in an

upstream subarea is recorded in the correct downstream

subarea at the end of each day, a Next pointer specifies

the order in which the subareas are to be computed.

Figure 1 A watershed can be represented as a one-to-many type

hierarchical linked list that starts at the outlet and progresses up

each branch, ending at multiple distant sources

In the recursive subroutine (RankSA; Box 9) a loop is

executed in which the subroutine calls itself but with a

pointer to each Inlet in turn. After executing the first

Inlet, any ASSOCIATED pointers, are executed in turn.

As the recursion progresses, the program follows the

order of reaches (i.e. stream orders) given by the numbers

in Figure 1; first Reach 1, then Reach 2, followed by 3, 4,

etc. At each node, execution either goes upstream to a

new reach or drops back one level to a previous node.

As the execution progresses through the watershed,

the rank of each reach (stream order) is assigned. In this

example ranks of A to E are assigned, A to the outlet and

E to the first-order reaches. On completion of ranking,

the first-order reaches are numbered from 1 to 24 with the

highest ranked (E) reaches numbered 1 to 13, then the

next rank (D) numbered 14 to 19 for second-order

reaches, and so on ending with number 24 (Rank A) for

the fifth-order reach at the outlet. This order is shown in

Figure 2. With this order of execution assigned,

FirstSub (Box 9) is pointed at subarea 5, Subs(5), Subarea

5’s pointer Subs(5)%Next is pointed at Subs(6), and so on.

By specifying the order of execution using Subs(:)%Next

pointers the first-order reaches are computed first (Rank

E), then the next order reaches and so on, ending with the

highest-order reach (Rank A).

Box 9 Efficient processing a watershed of a network of

reaches as in Figure 1 is facilitated by recursively calling the

processor as the program works its way through the stream

network, starting at the outlet and ending at a distant

headwater source

 SUBROUTINE MakeNextPointers

 TYPE(SUBAREA), POINTER :: Subs(:), FirstSub, ThisSub

 COMMON /SUBAREA/ Subs,FirstSub

!

 ThisSub => Subs(1) ! Point to the subarea vector

 CALL RankSA(ThisSub) ! Call the recursive subroutine

!

 CALL AssignPointers ! Assign pointers to the ranked subareas

!

 RETURN

 END

!

 RECURSIVE SUBROUTINE RankSA(Subarea)

 TYPE(SUBAREA), POINTER :: Subs(:),FirstSub, ThisSub

 COMMON /SUBAREA/ Subs,FirstSub

 TYPE(SUBAREA), POINTER :: Upstream, Downstream

!

 Upstream => Subarea%Inlet

 Downstream => Subarea%Outlet

!

 CALL AssignRank(Subarea) ! Assign rank to this subarea

!

 DO WHILE (ASSOCIATED(Upstream) ! Quit when no

 ! more upstream subareas

 CALL RankSA(Upstream) ! RankSA calls itself for next

 ! subarea

 Upstream => Upstream%Inlet ! Point to next upstream subarea

 ENDDO

!

 RETURN

 END

!

 SUBROUTINE ProcessSA

 TYPE(SUBAREA), POINTER :: Subs(:), FirstSub, ThisSub

 COMMON /SUBAREA/ Subs, FirstSub

!

 ThisSub => FirstSub

 DO I=1, Site%NSA ! Cycle through the subareas

 CALL DailyRoutine(ThisSA) ! Daily subarea functions

 ! called from here

 ThisSub => ThisSub%Next ! Point to next subarea

 ENDDO

!

 RETURN

 END

June, 2015 Taylor R A J, et al. Code modernization and modularization of APEX and SWAT Vol. 8 No.3 91

Figure 2 The watershed processes are executed from headwaters

(Rank E) down to reaches of Rank D, C, and B, and then on to the

outlet (Rank A) following the order defined by the chain of

Subarea%Next pointers in the order given by the numbers

following the Rank

As each subarea is operated on, structures for reach

inflow and outflow are updated. The inflow structure is

updated by reach(s) upstream that have access via their

downstream Outlet pointers. The outflow is subtracted

from the reach’s initial state and added to the inflow of

the downstream reach. When all reaches of the current

rank have been computed, the reaches of the next order

streams (downstream reaches) are processed by adding in

the accumulated inflows, computing the flux and passing

the outflow to the next order streams, and so on down to

the outlet. Thus, by the use of pointers specifying the

geometry of the watershed and the proper order of

execution, the entire watershed may be operated on

efficiently with a minimum of statements.

The above description refers to stream network

processing, but the same logic applies to processing the

subareas through which the streams flow. A single call

in the control loop initiates the daily operations for each

subarea in the order shown in Figure 2; the weather is

calculated or read in, scheduled land management

operations are executed, soil properties, water dynamics,

sediment detachment and routing, nutrient cycling and

transport, pesticide fate and transport, and other processes

are computed, and the results stored in the structures Soils,

Water, Chems, and Outflow.

Box 9 shows the code required to recursively process

the subareas in the watershed to obtain the chain of

pointers to execute from headwaters to outlet

(RECURSIVE SUBROUTINE RankSA). There is very

little overhead cost to analyzing the watershed to create

the chain of pointers, which is more than offset by the

efficiency of addressing the properties collectively in

structures instead of separately in independent arrays.

An important benefit of this approach is that the

subareas may be read into the model in any order,

provided they each have an unique identifier (IDSA) and

the identifier of the subarea into which it drains is

specified. This simplifies editing the watershed: if it is

necessary to add reaches, only the upstream output

identifier needs to be edited to point to the inserted

reaches. Adding headwater reaches requires no editing

to existing subarea definitions.

Subtracting reaches is just as easy. An added benefit

of this system is that a user can select just a subset of

subareas (and thus just a portion of the routing structure)

for a specific simulation. For example, a watershed

calibration process can require hundreds of simulations,

but may require examination of results from just a few

sub-portions of the watershed. This approach allows

users to run only those parts of the model needed for the

calibration comparison and provides a much more

flexible routing scheme than has been traditionally used

in SWAT
[27-29]

 and similarly for APEX
[7]

. Another

feature of this system is that routing may be defined to

model an estuary or delta. The example shows a typical

upland watershed, with a single outlet per subarea. This

method provides the means to define multiple outlets

using a chain of outlet pointers.

Finally, there is the combination of structure and

operator overloading that provides a powerful link to the

object-oriented programming available in C++ and other

newer languages. Two important features of object-

oriented programming are inheritance and polymorphism.

The former uses the concept of class to define a

subprogram that can be used as the basis for secondary

subprograms that make similar computations. By

defining the processing of phosphorus in Box 7 as a class,

a sub-class could process nitrates using the phosphorus

code as the starting point for nitrate processing.

Inheritance is a useful paradigm for manipulating objects

92 June, 2015 Int J Agric & Biol Eng Open Access at http://www.ijabe.org Vol. 8 No.3

in a graphical user interface (GUI) for example, but its

utility in process-oriented models programming is

limited.

The final feature, polymorphism, enables the

programmer to define new operators. For example, the

standard operators (+ - * / **) can be extended or

redefined for specific purposes. Its great power for

EPIC/APEX/SWAT is the ability to create new operators,

which do not replace function calls, but call functions in a

different way. For example, computation of the mean of

a list of numbers is traditionally achieved by calling a

function:

Average = Mean(Input,N)

Using an operator (.MEAN.) to do the same thing

looks like this:

Average = Input.MEAN.N

Box 10 Defining a new operator to compute averages

combined with a pointer to the numbers to be averaged results

in a succinct statement

 INTERFACE OPERATOR(.MEAN.)

 REAL*4 FUNCTION Mean(Input, Period)

 REAL*4, INTENT(IN) :: Input(:)

 INTEGER, INTENT(IN) :: Period

 END FUNCTION MEAN

 END INTERFACE

!

 TYPE(Water), POINTER :: ThisWater ! Pointer to

 ! the target variables

 .

 etc.

 .

 ThisWater => ThisSubarea%Water

 DO Mnth=1,12

 ThisSubarea%Month(Mnth)%Nitrate = &

 ThisWater%Nitrate.Mean.Mnth

 ENDO

 ThisSubarea%Annual%Nitrate = &

 ThisWater%Nitrate.Mean.Year

 ThisSubarea%Annual%Sediment = &

 ThisWater%Sediment.Mean.Year

 .

 etc.

 .

 END

!

 REAL*4 FUNCTION Mean(Input, Period)

! Computes the average value for variable pointed to

! by Input for interval Period

 .

 .

 RETURN

 END

On its own, this would seem to be just a semantic

change, but in combination with pointers, it creates a

simple and powerful extension to bookkeeping in

EPIC/APEX/SWAT. The key feature of operator

polymorphism is the procedure interface block that

defines the operator (Box 10). It creates a link between

the function performing the operation (REAL*4

FUNCTION Mean) and the new operator (.MEAN.) so

that a function call can be written like an ordinary

assignment statement:

ThisSubarea%Annual%Nitrate =

ThisWater%Nitrate.Mean.Period

The combination of a pointer to the data to be

averaged and the new operator creates a uniform yet

flexible statement with the second operand (Period)

defining the interval over which averaging is to be

computed; the function must be able to interpret the value

of Period in terms of the desired interval. In the current

implementation, the function interprets the interval value

of 0 as annual average, values of 1-12 produce monthly

averages, and a negative number is interpreted as the

number of days to be accumulated for the mean.

4 Conclusions

All the changes described facilitate easier modification

and documentation to EPIC, APEX, and SWAT, as well

as simplifying maintenance. In addition, these

modifications will bring EPIC and APEX into line with

the design of a pest population dynamics model that will

be the basis for expansion of these models to encompass

multitrophic ecological processes. Incorporating more

realistic pest-crop interactions will enable cost-benefit

analysis of pesticide use as well as provide daily feedback

between pest population and growing crop. Several

other additions are also planned for EPIC/APEX. Like

the pest management module, incorporation of more

realistic spatial distributions of plants and plant

community dynamics will both require a more modular

approach. These features are especially important for

analyses of rangeland grazing management, which is the

latest component of the NRCS CEAP initiative
[31]

.

These models are neither perfect nor complete; they

are continually being updated and improved as our

understanding of the natural world grows. The

simplification and modularization of model code and

reduced documentation overhead allows the pace of

June, 2015 Taylor R A J, et al. Code modernization and modularization of APEX and SWAT Vol. 8 No.3 93

model development to be accelerated by involving more

researchers. The broad nature of these models cover

many aspects of the environment; development of model

routines requires not just programming skills but

extensive knowledge of meteorology, soil chemistry and

physics, limnology, hydrology, plant physiology,

climatology and instream dynamics. No single

individual or small group can possess an adequate

in-depth scientific understanding in all these areas to keep

these models state-of-the-art. By simplifying and

restructuring model code a very detailed knowledge of

the entire model code is no longer a prerequisite for

developers. Collaborating experts with very specific

disciplines (i.e. soil carbon or lacustrine nutrient cycling),

but little code experience, can be leveraged into more

active development. The accumulation of knowledge

from this broad base of experts is needed to keep these

models current and applicable to todays and tomorrows

environmental challenges.

Acknowledgements

We thank Phil Gassman, the editor for the IJABE

SWAT Special Issue and two anonymous referees for

their critical reading and excellent suggestions. USDA

is an equal opportunity employer and provider.

[References]

[1] Chapmann S J. Fortran 90/95 for Scientists and Engineers,

2nd Ed, McGraw-Hill Higher Education. 2004.

[2] Williams J R, Jones C A, Dyke P T. A modeling approach

to determining the relationship between erosion and soil

productivity. Transactions of the ASAE, 1984; 27:

129–144.

[3] Williams J R. The erosion productivity impact calculator

(EPIC) model: A case history. Philosophical Transactions

of the Royal Society of London. Series B: Biological

Sciences, 1990; 329: 421–428.

[4] Williams J R. The EPIC model. pp. 909-1000 in Computer

Models of Watershed Hydrology, (Singh VP, ed.). Water

Resources Publications, Highlands Ranch, CO, USA. 1995.

[5] Williams J R, Nearing M, Nicks A, Skidmore E, Valentin C,

King K, et al. Using soil erosion models for global change

studies. Journal of Soil and Water Conservation, 1996; 51:

381–385.

[6] Williams J R, Arnold J G, Kiniry J R, Gassman P W, Green

C H. History of model development at Temple, Texas.

Hydrological sciences journal, 2008; 53: 948–960.

[7] Williams J R, Izaurralde R C, Steglich E M. Agricultural

Policy/Environmental eXtender Model: Theoretical

Documentation, Version 0604. BREC Report 2008-17.

Temple, Tex.: Texas AgriLife Blackland Research and

Extension Center. 2008. Available at:

http://epicapex.tamu.edu/downloads/user-manuals/. Accessed

on [2014-08-17].

[8] Izaurralde R C, Williams J R, McGill W B, Rosenberg N J.

Simulating soil C dynamics with EPIC: Model description

and testing against long-term data. Ecological Modelling,

2006; 192: 362–384.

[9] Gassman P W, Williams J R, Wang X, Saleh A, Osei E,

Hauck L M, et al. The Agricultural Policy/Environmental

Extender (APEX. model: An emerging tool for landscape and

watershed environmental analyses. Transactions of the

ASABE, 2010; 53: 711–740.

[10] Arnold J G, Srinivasan R, Muttiah R S, Williams J R. Large

area hydrologic modeling and assessment, Part I: Model

development. Journal of the American Water Resources

Association, 1998; 34: 73–89.

[11] Arnold J G, Moriasi D N, Gassman P W, Abbaspour K C,

White M J, Srinivasan R, et al. SWAT: Model use,

calibration, and validation. Transactions of the ASABE,

2012; 55: 1491–1508.

[12] Gassman P W, Williams J R, Benson V W, Izaurralde R C,

Hauck L M, Jones C A, et al. Historical development and

applications of the EPIC and APEX models. ASAE/CSAE

Meeting Paper No. 042097. ASAE, St. Joseph, MI. 2004.

[13] Gassman P W, Reyes M R, Green C H, Arnold J G. The

Soil and Water Assessment Tool: historical development,

applications, and future research directions. Transactions of

the ASABE, 2007; 50: 1211–1250.

[14] Wang X, Williams J R, Gassman P W, Baffaut C, Izaurralde

R C, Jeong J, et al. EPIC and APEX: Model use, calibration,

and validation. Transactions of the ASABE, 2012; 55:

1447–1462.

[15] Duriancik L F, Bucks D, Dobrowolski J P, Drewes T, Eckles

S D, Jolley L, et al. The first five years of the Conservation

Effects Assessment Project. Journal of Soil and Water

Conservation, 2008; 63: 185A–197A.

[16] Wang X, Kannan N, Santhi C, Potter S R, Williams J R,

Arnold J G. Integrating APEX output for cultivated

cropland with SWAT simulation for regional modeling.

Transactions of the ASABE, 2011; 54: 1281–1298.

[17] Jeong J, Kannan N, Arnold J G, Glick R, Gosselink L,

Srinivasan R. Development and integration of sub-hourly

rainfall–runoff modeling capability within a watershed model.

Water Resources Management, 2010; 24: 4505–4527.

http://epicapex.tamu.edu/downloads/user-manuals/

94 June, 2015 Int J Agric & Biol Eng Open Access at http://www.ijabe.org Vol. 8 No.3

[18] Jeong J, Kannan N, Arnold J G, Glick R, Gosselink L,

Srinivasan R, et al. Development of sub-daily erosion and

sediment transport algorithms for SWAT. Transactions of

the ASABE, 2011; 54: 1685–1691.

[19] Jones J W, Keating B A, Porter C H. Approaches to

modular model development. Agricultural Systems, 2001;

70: 421–443.

[20] Jones J W, Hoogenboom G, Porter C H, Boote K J, Batchelor

W D, Hunt L A, et al. The DSSAT cropping system model.

European Journal of Agronomy, 2003; 18: 235–265.

[21] Harbaugh A W. MODFLOW-2005, The U.S. Geological

Survey Modular Ground-Water Model—the Ground-Water

Flow Process. Techniques and Methods 6–A16. U.S.

Geological Survey, Washington, DC, USA. 2005.

[22] Ascough J C, David O, Krause P, Fink M, Kralisch S, Kipka

H, et al. Integrated agricultural system modeling using

OMS 3: Component driven stream flow and nutrient

dynamics simulations. 2010 International Congress on

Environmental Modelling and Software Modelling for

Environment’s Sake. Swayne D A, Yang W, Voinov A A,

Rizzoli A, Filatova T, eds. International Environmental

Modelling and Software Society, Ottawa, Canada. 2010.

[23] van Kraalingen D W G. The FSE System for Crop

Simulation: Version 2.1 (Quantitative Approaches in Systems

Analysis Report No. 1). C.T. de Wit Graduate School for

Production Ecology, Wageningen University, Wageningen,

Netherlands. 1995.

[24] Metcalf M, Reid J, Cohen M. Modern Fortran Explained.

Oxford University Press, Oxford, UK. 2011.

[25] Markus A. Modern Fortran in Practice. Cambridege

University Press, Cambridge, UK. 2012.

[26] Olivera F, Valenzuela M, Srinivasan R, Choi J, Chou H,

Koka S, et al. ArcGIS-SWAT: A Geodata Model and GIS

Interface for SWAT. Journal of the American Water

Resources Association, 2006; 42: 295–309.

[27] Tuppad P, Winchell M F, Wang X, Srinivasan R, Williams J

R. ArcAPEX: ArcGIS interface for Agricultural Policy

Environmental eXtender (APEX) hydrology/water quality

model. International Agricultural Engineering Journal,

2009; 18: 59–71.

[28] Arnold J G, Srinivasan R, Engel B A. Flexible watershed

configurations for simulating models. Hydrological Science

and Technology, 1994; 10: 5–14.

[29] Williams J R, Arnold J G. A system of erosion-sediment

yield models. Soil Technology, 1997; 11(1): 43–55.

[30] Arnold J G, Kiniry J R, Srinivasan R, Williams J R, Haney E

B, Neitsch S L. Soil and Water Assessment Tool

Input/Output File Documentation: Version 2009. U.S.

Department of Agriculture – Agricultural Research Service,

Grassland, Soil and Water Research Laboratory, Temple, TX

and Blackland Research and Extension Center, Texas

AgriLife Research, Temple, TX. Texas Water Resources

Institute Technical Report No. 365, Texas A&M University

System, College Station, TX. 2011. Available at

http://swat.tamu.edu/documentation. Accessed on

[2014-08-17].

[31] Weltz M A, Jolley L, Goodrich D, Boykin K, Nearing M,

Stone J, et al. Techniques for assessing the environmental

outcomes of conservation practices applied to rangeland

watersheds. Journal of Soil and Water Conservation, 2011,

66: 154A-162A.

http://pubs.usgs.gov/tm/2005/tm6A16/
http://pubs.usgs.gov/tm/2005/tm6A16/
http://pubs.usgs.gov/tm/2005/tm6A16/
http://swat.tamu.edu/documentation

