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Challenges in using an analog uncooled microbolometer thermal 
camera to measure crop temperature 

 

Krzysztof Kusnierek*, Audun Korsaeth 
(Bioforsk – Norwegian Institute for Agricultural and Environmental Research, Kapp, N-2849, Norway) 

 

Abstract: It has been long known that thermal imaging may be used to detect stress (e.g. water and nutrient deficiency) in 
growing crops.  Developments in microbolometer thermal cameras, such as the introduction of imaging arrays that may 
operate without costly active temperature stabilization, have vitalized the interest in thermal imaging for crop measurements.  
This study focused on the challenges occurring when temperature stabilization was omitted, including the effects of 
focal-plane-array (FPA) temperature, camera settings and the environment in which the measurements were performed.  
Further, the models for providing thermal response from an analog LWIR video signal (typical output from low-cost 
microbolometer thermal cameras) were designed and tested.  Finally, the challenges which typically occur under practical use 
of thermal imaging of crops were illustrated and discussed, by means of three cereal showcases, including proximal and 
remotely based (UAV) data acquisition.  The results showed that changing FPA temperature greatly affected the 
measurements, and that wind and irradiance also appeared to affect the temperature dynamics considerably.  Further,  it is 
found that adequate settings of camera gain and offset were crucial for obtaining a reliable result.  The model which was 
considered best in terms of transforming video signals into thermal response data included information on camera FPA 
temperature, and was based on a priori calibrations using a black-body radiation source under controlled conditions.  Very 
good calibration (r2>0.99, RMSE=0.32°C, n=96) was obtained for a target temperature range of 15-35°C, covering typical 
daytime crop temperatures in the growing season.  However, the three showcases illustrated, that under practical conditions, 
more factors than FPA temperature may need to be corrected for.  In conclusion, this study shows that thermal data acquisition 
by means of an analog, uncooled thermal camera may represent a possible, cost-efficient method for the detection of crop stress, 
but appropriate corrections of disturbing factors are required in order to obtain sufficient accuracy. 
Keywords: analog thermal camera, uncooled microbolometer, canopy temperature, cereals, UAV 
DOI: 10.3965/j.ijabe.20140704.007 
 

Citation: Kusnierek K, Korsaeth A.  Challenges in using an analog uncooled microbolometer thermal camera to measure crop 

temperature.  Int J Agric & Biol Eng, 2014; 7(4): 60－74. 
 

1  Introduction 

The use of thermal cameras has been reported in a 
multitude of environmental applications, including 
vegetation monitoring.  Almost three decades ago, 
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Jackson et al.[1] reported that thermal imagery may be 
used for water stress detection due to a temperature rise in 
stressed vegetation caused by stomatal closure.  They 
introduced an idea to thermally monitor water stress in 
vegetation, and thereby provide a means for irrigation 
scheduling, based on an automatic decision support 
system.  The application of thermal imaging for 
irrigation scheduling has been successful in arid regions 
where the temperature difference between air and 
transpiring canopy is high[2], but the usefulness of this 
method has also been reported for other climatic 
regions[3].  

Thermal imagery has been used for estimating plant 
stomatal conductance[4,5] and leaf water stress potential[2].  
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A more large-scale application of thermography was 
described by Jones et al.[6], who used LWIR infrared 
sensing in drought phenotyping of grapevine (Vitis 
vinifera L.) and rice (Oriza Sativa L.).  Munns et al.[7] 
investigated the genetic variation in the stomatal response 
to water deficit in wheat (Triticum aestivum L.) and 
barley (Hordeum vulgare L.) by means of thermal 
detection, both under controlled environments and in the 
field.  

Thermal imaging has not only been used for canopy 
screening.  As reviewed by Vadivambal and Jayas[8], 
thermal imaging in agriculture and the food industry has 
been used for e.g. detection of pathogens in plants, ice 
nucleation, determination of fruit yield, as well as quality 
assessment of several post-harvest operations.  An 
environmental application of thermography has been 
demonstrated by Johnson et al.[9] who used canopy 
temperature measurements to identify sequestered CO2 
leakage. 

Microbolometer thermal cameras record the 
electromagnetic radiation in the long-wave infrared 
(LWIR) range.  Advances in such cameras include 
imaging arrays that may operate without costly active 
temperature stabilization[10].  This reduces not only the 
cost of the sensor but also its weight, which opens for a 
range of new applications in vegetation monitoring, 
including the use of robotized portable measurement 
platforms such as Unmanned Aerial Vehicles (UAV).  

Small scale agricultural and horticultural enterprises 
tend to look for measurement systems with low 
investment cost.  The low-cost microbolometer thermal 
cameras are principally designed for thermal imaging 
only (e.g. [11]), with an analog video stream as output, i.e. 
without any direct thermographic capability.  Instead, 
these cameras are typically internally calibrated by the 
manufacturer to produce 8-bit grayscale images 
conforming to a measured temperature span, controlled 
by software settings.  Custom radiometric calibration of 
such images is also possible, but this requires a 
quantitative relationship of the camera radiance (the 8-bit 
grayscale value in case of the analog video signal) to a 
radiative source with known temperature.  Usually, a 
blackbody source is used (e.g. [12]), but water represents 

a cheaper alternative for temperature calibration[13].  To 
obtain a stable relationship between a grayscale 
pixel-value and a viewed object temperature, manual 
adjustment of the camera settings is required during the 
thermal image acquisition. 

In addition to camera calibration and adjustment, the 
focal-plane-array temperature of uncooled thermal 
cameras also affects their thermal output. Nugent et al.[14] 
proposed a robust mathematical method to correct for 
such an influence.  Their model was, however, designed 
for a digital output from a thermal camera, not an analog 
signal.  To our knowledge, such a data handling scheme 
has not yet been designed for the analog output from 
microbolometer thermal cameras. 

In this study, the objective was three-fold. Firstly, we 
focused on the system challenges which occur when 
temperature stabilization of a thermal camera is omitted 
(i.e. a microbolometer uncooled thermal camera), 
including the effects of focal-plane-array (FPA) 
temperature, warm-up time, camera settings, and the 
environment in which the measurements are performed.  
Secondly, we aimed at developing a method which can be 
used to transform the camera readings from a typical 
low-cost, uncooled, analog microbolometer camera (8-bit 
LWIR video signal) into temperature data.  Finally, we 
tested the use of such low-cost thermal data acquisition to 
detect crop stress under practical conditions, in order to 
identify possible constraints and solutions.  To do so, we 
selected three showcases: a) proximal indoor (greenhouse) 
measurements of phosphorus deficiency in barley, and b) 
proximal and c) remotely based (UAV) outdoor 
measurements of water deficiency in wheat. 

2  Materials and methods 

2.1  Thermal camera setup, calibration and data 
handling 

In this study, we used an uncooled microbolometer 
LWIR camera (TAU 320, FLIR, USA; Figure 1a), from 
which the 8-bit analog video stream output was analyzed.  
The pixel resolution of the camera is 324 × 256 pixels, 
which is commonly recognized as a medium resolution.  
The camera is equipped with an internal uniformity 
correction and internal temperature calibration, but in the 
basic version of the camera only the temperature at the 
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four center pixels is available (shown as an image 
midpoint temperature value, Figure 1c).  For the full 
image frame, however, the generated output is available 
as grayscale values only.  Hence, a custom camera 
calibration was required.  We calibrated the camera 
using a blackbody radiation source (Isotech 988, Isotech, 
UK, Figure 1b) with a range from 15°C to 35°C, and with 
a thermal resolution of 0.01°C.  A video frame of the 
blackbody radiation source heated up to 25°C is given in 
Figure 1d.  

 
Figure 1  (a) FLIR TAU 320 thermal camera, (b) Isotech 988 

blackbody radiation source, (c) thermal image with factory 
calibrated point thermometer (d) a sample thermal image of a 

blackbody source at temperature of 25°C (inner circle) 
 

The camera is equipped with automatic adjustment of 
gain and offset, optimized for thermal detection or 
identification.  To obtain quantitative temperature data, 
manual settings of these parameters is required (i.e. to 
maintain the stability and repeatability of the 
measurements).  The optimization of the adequate gain 
and offset settings is one of the objectives of this work 
and will be further discussed in the ‘Results and 
discussion’ section.  As a starting point we set the gain 
value to 25 (in 8-bit scale), and that of offset value to 
4500 (in 14-bit scale).  It is worth noting, that thermal 
camera manuals tend to address camera gain and offset as 
image contrast and brightness, respectively. 

The data obtained from digitization of analog video 
stream using a simple video grabber and video editing 
software were used in building calibration models.  Data 
handling and calculation procedures were conducted in 
R[15] and MATLAB[16].  In the analysis of the manual 
setting of the camera the data were interpolated and 
smoothed using the thin plate splines regression[17].  In 
the analysis of the camera initialization time we utilized 
local polynomial regression fitting[18] to smooth the 
experimental data. 
2.2  Resolution of the analog video  

In this study, we acquired the analog video in Phase 
Alternating Line (PAL) encoding standard, commonly 
used to bring high bandwidth, imaging quality and 
resolution.  The analog video was converted into digital 
(avi) format and exported frame-wise as images in high 
quality jpg format.  The output resolution of the 
recorded video stream was 592 × 512 pixels.  In a post 
processing step we resampled the video images to the 
actual resolution of the imager (324 × 256 pixels). 
2.3  Geometric calibration  

A geometric calibration of the camera is a step 
required to correct for lens distortion.  The wider the 
field-of-view (FOV) of the lens, the higher the geometric 
distortion of the image.  The calibration procedure 
detects the intrinsic camera parameter, i.e. focal distance, 
principal point coordinates as well as lens radial and 
tangential distortions.  Several image calibration 
methods are available, and we chose to use the Bouguet’s 
calibration toolbox[19].  This is a MATLAB procedure 
designed for semiautomatic extraction of chessboard 
target corners for visible light imaging cameras.  In 
order to adapt the method to be useable for a thermal 
camera, we had to make the target thermally recordable.  
The thermal image calibration literature contains a 
multitude of possible solutions, including heating a paper 
chessboard target[20], building aluminum plates[21] or 
designing targets comprised of resistive wires[22].  We 
utilized a recently proposed solution of using a checkered 
cover overlying a heated plate[23], in our case a monitor 
display (Figure 2a).  The sample raw image used in 
geometric calibration of the thermal camera procedure 
and the corresponding corrected image are depicted in 
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Figures 2b and 2c, respectively. 

 
Figure 2  An illustration of the geometric correction (i.e. to correct 

for lens distortion) using Bouguet’s calibration, showing (a) a 
chessboard target mounted in front of a monitor, (b) a raw thermal 
image of the setup, and (c) a geometrically corrected thermal image 

 

2.4  Thermal sensitivity  
The understanding of the thermal sensitivity of the 

camera is important in determining the manual gain and 
offset settings at the analog video acquisition.  The 
relationship between actual thermal sensitivity Sactual and 
f-number f (i.e. focal ratio, which is the ratio of the lens’s 
focal length to the lens diameter) may be expressed by 
Equation (1)[24]: 

Sactual=Snominal x f 2     (1) 
where, Snominal is the nominal thermal sensitivity of the 
camera.  

Our camera had a nominal thermal sensitivity of 
0.05°C, when a lens of f = 1 was used.  The actual f of 
our 9mm lens was 1.25.  Using Eq. (1), the resulting 
actual thermal sensitivity of the camera was then       
~0.078°C.  This sensitivity applies at a target 
temperature of 30°C.  Thermal sensitivity is, however, 
also positively correlated with target temperature[24].  
Since the target temperatures measured in this study were 
somewhat below 30°C, the actual thermal sensitivity of 
the TAU 320 camera was close to 0.08°C in most cases.  
Considering the 8-bit data frame of the video signal, the 
tested camera would thus cover target temperature span 
of approximately 20°C (256 × 0.08°C). 

2.5  Models for transforming analog video signal into 
thermal response 

We considered three alternative strategies for building 
a model for transforming an analog video signal into 
thermal response.  All strategies involved the use of 
regression models, and some kind of temperature 
reference.  

In the first approach, FACTORY, we used the image 
midpoint temperature value, resulting from the factory 
(i.e. default) calibration of the camera as a reference.  A 
dataset for calibrating a regression model was obtained by 
sampling several images (covering a range of 
temperatures).  For each image, the pixels closest to the 
image midpoint were assigned the midpoint temperature 
value in addition to their original grayscale value (i.e. 
creating temperature and grayscale value pairs).  The 
temperature values represented the dependent variable in 
the regression model, whereas the grayscale values were 
considered as a predictor variable.  Additionally, the 
FPA temperature was recorded at the time when each 
image was taken, and in some cases used as a second 
predictor variable. 

In a second approach, A PRIORI, calibration data was 
acquired using laboratory measurements of a blackbody 
source prior to measurements.  Calibration data were 
obtained at many different FPA levels, by conducting the 
calibration measurements in rooms with different ambient 
temperatures. 

In the third and final approach, AD HOC, calibration 
data were acquired using the same blackbody source as 
for the A PRIORI approach, but the actual calibration was 
performed in the field before and after the crop 
monitoring.  FPA temperatures were recorded as in the 
FACTORY approach.  

All three approaches followed the same scheme of 
model building.  Initially, linear regression models using 
grayscale pixel values as the only predictor were fitted to 
the temperature data.  These models were then expanded 
to include FPA temperature as a second predictor.  The 
next step was to fit quadratic functions to both the 
single-predictor and the two-predictor (i.e. grayscale 
value and FPA temperature) data sets.  All models were 
subjected to a leave-one-out cross validation and 
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evaluated on the basis of their root mean square error 
(RMSE) and adjusted coefficient of determination (R2adj), 
using standard procedures. 
2.6  Showcases 

Thermal measurements of crops may be of interest 
both in a greenhouse (indoors) and in the field (outdoors).  
In the field it is possible to use a thermal camera both as a 
proximal and as a remote sensor.  Various ways of using 
the camera pose specific challenges in obtaining sound 
results.  We used three experimental showcases to 
illustrate and discuss challenges, which may typically 
occur under practical use of thermal imaging of crops: 
proximal indoor thermal measurement of phosphorus 
stress in barley, and proximal and remotely based outdoor 
thermal measurement of water stress in wheat. 
2.6.1  Proximal indoor measurement of phosphorus 
stress in barley 

Proximal thermal measurements were performed in a 
pot experiment conducted in a greenhouse at Bioforsk 
Arable Crops Department in SE Norway.  The pots, 
which were placed on growing tables at a height of   
0.85 m, had a diameter of 0.2 m, each containing 5 liters 
of soil and 10 growing barley plants.  A P stress gradient 
was obtained by utilizing soil from 15 locations in SE 
Norway, containing various amounts of plant available P.  
We utilized only one of the three replicates in the pot 
experiment, so that our data comprised 15 pots with 
P-limited barley plants (one from each location) and 15 
parallel control pots with barley plants to which an 
equivalent of 2 g P/m2 had been applied to remove any 
effect of P deficiency, regardless of the initial soil P 
content.  Thermal measurements were performed on 
18.03.2013, when the barley plants had reached growing 
stage BBCH 44.  The greenhouse roof ventilation 
windows were open at the time of the measurement.  
Each of the 15 pairs comprising P-stressed and control 
barley plants was imaged from a side view.  A uniform 
background (cardboard) was used to make it easier to 
extract the plant pixels in the image, needed for the 
further analyses.  The growing tables were distributed 
evenly throughout the greenhouse, covering 12 m by 5 m.  
We obtained the ambient temperature gradient by 
analyzing the temperatures of the cardboard we used as a 

uniform background of the images.  
To correct for variation in the indoor temperature (see 

the ‘Results and discussion’ section), the measured plant 
temperatures were normalized using the obtained 
background temperature gradient.  
2.6.2  Proximal thermal outdoor measurement of water 
stress in wheat 

For the outdoor showcases we utilized a fertilizer - 
water stress field experiment in wheat, performed at Yara 
Research Center in Hanninghof, Germany.  The 
experimental field was divided into a non-irrigated and an 
irrigated part.  The irrigation was performed using a 
subsoil drip system. Due to the low water-holding 
capacity of the sandy soil, combined with low precipitation 
in the time preceding the thermal measurements, the 
wheat plants in the non-irrigated part showed signs of 
drought stress.  The test field included 36 plots in each 
water regime (total of 72 plots) and wheat was cultivated 
under various N fertilization regimes for testing split 
fertilization rates, which is outside the scope of this study.  
In the proximal thermal showcase we conducted the 
measurements on 24 test plots.  Weather data were 
available (minute observations) from a weather station 
located 200 m from the experimental site. 

The proximal measurements were conducted by 
mounting the camera on a 2 m pole with a 60° off-nadir 
view zenith angle in order to reduce the influencing 
in-frame differences of the canopy architecture, and 
possible effects of bare soil.  

Crop growth and status are mainly monitored by 
means of visible and near-infrared spectroscopy, at 
midday and with sunny and dry conditions.  Thermal 
measurements, which are generally used for accounting 
of the water stress in plants[25], are in practice often 
conducted in parallel to the spectral acquisition.  The 
measurements conducted at high solar irradiation amplify 
the temperature differences between stressed and 
non-stressed plants[22], but may also be a source of the 
random variation[6].  We must consider the anisotropic 
distribution of the reflective portion of the apparent 
reflected temperatures measured by the thermal imager.  
The anisotropic distribution is known as Bi-directional 
Distribution Function (BRDF), and is related to the view 
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and solar irradiation horizontal and azimuthal angles.  
For further reading in this subject, we refer to the work of 
Snyder et al.[26].  Although only a few percent of the 
measured apparent temperature canopy is related to the 
solar reflectivity, as the emissivity of a healthy crop is at 
least 0.95[4,27], its influence on the measured temperature 
may be high.  Regardless of the geometrical correction 
of the images, conducted in the initial step of the 
experiment, the radiance distribution in the image is 
related to the view angles of the camera lens.  The 
relatively low view angle amplifies the differences in 
solar irradiance distribution.  Therefore, to limit this 
effect, we used only the central area of the images. 
2.6.3  Remotely based thermal outdoor measurement of 
water stress in wheat 

We utilized the same field experiment here as for the 
proximal thermal measurements described in section 
2.6.2.  The remote measurements were conducted using 
a Microdrones MD-1000 multi-rotor UAV, operating at a 
height of 85 m above the ground, with the camera 
mounted in a nadir view position.  In order to reduce the 
change in FPA temperature and thereby the dependency 
on the ambient temperature, we introduced a custom 
camera housing made of a plastic box filled with 
synthetic foam and covered with a reflective space foil.  
In the remote thermal showcase we conducted the 
measurements on 40 test plots.  

During processing of the thermal imagery we defined 
two thermal gradients (see the ‘Results and discussion’ 
section).  To correct for these trends, they were averaged 
into a general trend, and subsequently subtracted from the 
dataset. 

3  Results and discussion 

3.1  System challenges in the absence of temperature 
stabilization 
3.1.1  FPA temperature and warm-up time  

It is well known that electromagnetic radiation 
measurements require a stabilization of the sensor 
temperature in order to display reliable results (e.g. [22]).  
Therefore, the first step of the investigation was to test 
the focal plane array (FPA) temperature after camera 
initialization and estimate the optimal time for 

stabilization of the camera.  This was tested under 
various ambient conditions (Figure 3).  

 
Figure 3  The camera focal-plane-array temperatures (smoothed 

using local polynomial regression fitting) plotted in the function of 
time after camera initialization measured indoors (dashed lines) and 

outdoors (solid lines) at various ambient temperatures (Ta).  For 
the outdoor datasets, observed cloud cover and wind speed, 

measured at a nearby weather station, are indicated 
 

The time from camera initialization to a relatively 
stable FPA temperature was highly affected by the 
ambient conditions (Figure 3).  The indoor 
measurements showed that the time to stabilization 
increased with increasing ambient temperature.  A 
similar relationship was reported by Berni et al.[22], who 
also performed a laboratory experiment on camera 
warm-up time in their study on remote sensing of 
vegetation monitoring.  The initial change in FPA 
temperature measured indoors appeared to be at a 
relatively steady rate.  This is probably due to the 
controlled environment with stable irradiation and high 
air mass stability.  The FPA temperature measured 
indoors appeared to stabilize after about 30-40 minutes.  
By comparison, Grant et al.[27] reported an FPA 
temperature stabilization time of approx. 10 minutes, 
when measured under laboratory conditions.  The 
possible reason for their shorter stabilization time could 
be that they used a different type of camera and/or that 
the initial camera temperature was higher.  The outdoor 
measurements also revealed a positive correlation 
between ambient temperature and time until stabilization 
of FPA temperature (Figure 3).  The camera temperature 
stabilization appeared, however, to be influenced also by 
wind strength and, to some extent, by the level of 
radiation related to the type of the cloud cover.  Wind 
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appeared to prevent the camera from warming up to the 
same extent as in the laboratory, under the same ambient 
temperature (17°C, Figure 3).  In the most extreme case 
recorded, with wind speed around    4 m/s and ambient 
temperature of 14°C, the camera warm-up time was only 
15-20 minutes.  

The temperature of the camera operating outdoors 
was less stable than indoors.  The influence of wind on 
thermal camera performance has also been reported in 
other studies.  Leinonen et al.[5] concluded that wind 
speed had a marked effect on their thermal estimation of 
stomatal conductance.  In a conference paper, Zia et 
al.[28] presented results showing a 1.5°C drop in measured 
temperature when a wind speed of 1.12 m/s was used 
under laboratory conditions. 

The observed effect of lowered radiation due to cloud 
cover may be explained by the fact that under clear sky 
conditions the intense direct illumination most likely 
heats up the camera, while under cloud cover the 
illumination is more diffuse and does not increase the 
camera temperature to the same extent. 

The outdoor measurements show that the ambient 
weather conditions may greatly affect the camera 

warm-up time and thereby camera stabilization.  
Measurements performed under changing conditions 
should therefore be avoided.  An uncooled thermal 
camera should be initialized and exposed to the measuring 
environment for at least 30-40 minutes before usage. 
3.1.2  Manual settings of the camera 

The typical analog thermal imager (e.g. a 
microbolometer camera) is equipped with automatic 
adjustment of camera gain and offset, optimized for 
thermal detection or identification.  In order to use such 
an imager to provide quantitative temperature data, 
manual gain and offset settings are required for retaining 
stability during measurements.  There is a challenge, 
however, to select a manual setting that returns the 
desired temperature range with an adequate thermal 
resolution of the measured scene.  To illustrate this, we 
display (Figure 4) the influence of a camera gain setting 
(0-255 in 8-bit range) on the grey-scale values recorded 
by a thermal camera (0-255 in 8-bit range) while 
observing the blackbody target temperatures between 15 
and 35°C.  Datasets were sampled at three offset levels 
(4550, 4700 and 4850 in 4-bit range) and two camera 
temperature levels (28 and 32.5°C). 

 
Figure 4  Four major factors influencing a grayscale value of the thermal image illustrated by means of a legend-bar (bottom right), 

including the temperature of the observed object (abscissa axes), camera gain (ordinate axes), camera offset (values column-wise) and 
camera’s focal-plane-array temperature (values row-wise).  The data were interpolated and smoothed using thin plate splines regression 
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The results showed that the optimum combination of 
gain and offset settings depended on the FPA temperature.  
The camera performance was much more sensitive to the 
offset than to the gain setting.  A proper offset setting 
must be selected at a given camera temperature to match 
a full 8-bit image dynamic range (i.e.: offset of 4 700 at 
FPA of 32.5°C).  A change in offset from 4 550 to 4 850 
(in a 14-bit scale) at a FPA temperature of 32.5°C was, 
for example, enough to completely level out the measured 
variation in temperatures (Figure 4, upper left and right 
sub-plot).  The optimum offset appeared to be at 4 700 
at the highest FPA temperature (Figure 4, upper left 
sub-plot), and 4 850 at the lowest temperature measured 
(Figure 4, lower right sub-plot).  At the respective 
optimum offset level the gain setting could then be used 
to obtain the best resolution within the temperature span 
of interest.  For example, if we were interested in 
visualizing the entire target temperature span (15-35°C), 
the gain should be set very low (below 10 in the 8-bit 
scale).  If a narrower target temperature range as of 
interest, e.g. 10-15°C, the gain should be set higher 
(above 50).  Using thermal observations for crop 
monitoring (e.g. plant stress detection), we would 
normally expect a relatively narrow temperature span. 
Hence the gain should not be set too low.  The thermal 
sensitivity of the camera is the upper limit of the gain 
enhancement. 
3.2  Empirical model to transform analog thermal 
video signal into temperature data 

We aimed at developing a model which can be used 
to transform the camera readings from a typical low-cost, 
uncooled, analog microbolometer camera (8-bit LWIR 
video signal) into temperature data.  Three different 
strategies of obtaining calibration data were tested, and 
six different regression models were evaluated within 
each strategy (Table 1). 

The modeling results indicated that the lowest-error 
modeling strategy (i.e. least RMSE) was to fit a 
polynomial regression model, including the FPA 
temperature information, to AD HOC measurements of 
the calibration blackbody source (around the time of crop 
monitoring) (Table 1).  The AD HOC model was, 
however, considered to be over-fitted, considering the 

low number of calibration points available (n=11).  In 
contrast, the approach based on A PRIORI calibration 
utilized 96 calibration points.  The resulting polynomial 
model, using FPA temperature as an extra predictor, 
out-performed all the other models (AD HOC models 
excluded, Table 1).  

 

Table 1  Performance of three alternative calibration 
strategies and three cross-validated (leave-one-out) models for 

transforming analog video signals into thermal response 

Strategy/model FACTORY A PRIORI AD HOC Predictors 

na 56 96 11  

Linear regression model   GSb 

RMSEc (°C) 0.82 4.25 0.26  

R2adjd 0.98 0.40 0.99  

Multiple regression model  GS, FPAe 

RMSE (°C) 0.78 0.38 0.24  

R2adj 0.98 >0.99 >0.99  

Polynomial model (2nd degree)  GS 

RMSE (°C) 0.81 4.22 0.27  

R2adj 0.98 0.41 0.99  

Polynomial model (2nd degree)  GS, FPA 

RMSE (°C) 0.74 0.32 0.16  

R2adj 0.99 >0.99 >0.99  

Note: a Dataset size; b Grey-scale value (analog video signal); c Root mean square 
error; d Adjusted coefficient of determination; e The camera’s focal-plane-array 

temperature. 
Performance of three alternative calibration strategies used either default factory 
setting of camera, FACTORY, a priori calibration under controlled conditions, A 

PRIORI, or calibration performed at the time of measurement, AD HOC.  Three 
cross-validated (leave-one-out) models transformed analog video signals using a 
TAU 320 camera with offset set to 4550 (14bit scale) and gain to 25 (8bit scale) 

into thermal response, using a blackbody radiation source (type/name) for 
providing target temperatures. 

 

The advantage of an AD HOC approach is that site- 
and time-specific information may be included in the 
calibrations.  It requires, however, that the conditions 
are stable during the period of calibration and 
measurements.  Moreover, the approach is very time 
consuming, since many calibration points are necessary in 
order to avoid over-fitting.  The alternative A PRIORI 
approach has the advantage of being performed in 
advance of measuring, thus saving crucial time during 
field operations.  Further, the lack of time constraints 
enables more calibration points to be included, and the 
conditions during calibration are stable.  

Including FPA temperature as a second predictor  
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reduced the RMSE and increased the R2adj in all models 
(with one exception; the polynomial model based on 
FACTORY calibration reduced RMSE, but R2adj 
increased from 0.98 to 0.99, Table 1).  Including the 
FPA temperature in the calibration model implies that e.g. 
the A PRIORI approach may include a certain degree of 
site- and time-specific adaptation, by using the actual 
FPA temperature recorded during measurement when 
transforming the analog thermal video signal into 
temperature data. 

The importance of considering the influence of the 
focal-plane-array temperature of the uncooled thermal 
camera on their thermal output was also emphasized by 
Nugent et al.[14].  Jones et al.[4] discussed the warming 
up of their camera electronics. During their experimental 
measurements they used a ‘constant temperature 
background’ measuring the lens cap to correct for this 
effect.  
3.3  Showcases  
3.3.1  Indoor proximal thermal measurement of 
phosphorus stress in barley  

During the thermal measurements in the greenhouse, 
the roof ventilation window was open, allowing cold air 
(-2°C) to flow into the greenhouse (and warm air to flow 
out) in order to stabilize the in-house temperature at 13°C 
(Figure 5a).  The incoming cold air influenced the 
ambient conditions in the greenhouse, inducing a thermal 
gradient during data acquisition (Figure 5b and 5c).  We 
found a drop of about 3°C at the coldest spot in the 
middle part of the greenhouse, when analyzing the 
background reference in the experimental images.  We 
also noticed a cooling effect on pots located next to a wall, 
as the cardboard backgrounds of these pots showed 
slightly lower (0.2°C) ambient temperatures than their 
nearest neighbor (Figure 5c).  The influence of the 
ambient temperature gradient on the thermal 
measurements of the plant canopies is evident, as 
demonstrated for the plants in the control pots (Figure 5c).  
It was possible, however, by utilizing the measured 
background reference temperatures, to correct for the 
ambient temperature gradient (Figure 5c).  After such 
correction the temperatures of the control plants ranged 
from 10.63°C to 11.43°C. 

 
Figure 5  The experimental setup and selected results of the 

indoor phosphorus stress experiment including: (a) greenhouse 
outline with pots distribution and air flows, (b) sample raw thermal 

images of control plants at different locations in the greenhouse,  
(c) temperature measured on image background and control plants 

along with the corrected control plant temperatures, and (d) 
background corrected plant temperatures and plant above ground 

P-uptake in pots with P-deficit (P-stress) and in control pots 
 

The plant available soil P content in the pots ranged 
from 28 to 267 mg/kg DM (including both P-limited and 
control pots).  The corresponding above-ground plant P 
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contents ranged from 0.18 to 0.25 g P 100 g/DM, which 
equals 2.6 to 23.6 g P/m2.  When analyzing the thermal 
measurements of each pair of pots (i.e. two pots filled 
with the same soil, one with no P limitation of the 
growing barley plants, one with sub-optimum P content), 
we found in each pair, a temperature increase in the 
P-limited barley plants relative to the control (Figure 5d).  
However, the thermal response of the induced P stress 
was low, with an average difference between P-limited 
and control barley plants of only 0.27°C.  The highest 
thermal difference was 0.61°C (Figure 5d).  

In order to explore the relationship between measured 
temperature and plant P stress, we regressed the thermal 
recordings (corrected for background temperature) on the 
measured plant P content for a subset of samples with a 
soil P content below 215 mg/kg DM.  The resulting 
model described 45% of the P variation in the analyzed 
subset.  Although the model performance may appear 
poor, we found the results encouraging.  It should be 
considered that in this example the covered temperature 
span was only 0.5°C, the number of points was low 
(n=12), and there was high soil variability, which also 
affected the plant moisture content. 

Phosphorus deficiency in crops has to our knowledge 
not been investigated thermally.  This may be due to the 
relatively low thermal effect it induces, compared to e.g. 
water deficiency[4].  When measuring thermal 
differences of such a low magnitude as in this showcase, 
the effects of disturbing factors, such as background 
temperature gradients, may become highly important for 
the results, and should therefore be corrected for.  
Variation in greenhouse ambient temperature was also 
reported by Grant et al.[27], who used a similar approach 
as that we used to correct for this effect.  

In our showcase, P deficiency was the only factor that 
influenced plant growth, for which adjustment was made.  
Its relatively low impact on canopy temperature implies 
that in the presence of other growth stressors, i.e. water 
deficiency, under less controlled conditions the thermal 
effect of P stress may be hidden.  Hence, the method of 
using thermal imaging to detect cereal P stress may be 
limited to use under controlled ambient environments, 
and with low variation in other growth factors. 

3.3.2  Outdoor proximal thermal measurement of water 
stress in wheat 

Two important challenges of using an analog thermal 
camera for proximal measurements under field conditions 
were identified in this showcase; variation related to the 
Bi-directional Distribution Function (BRDF[26]) and 
atmospheric changes during measuring.  Because the 
reflected solar irradiance is distributed in the canopy 
according to BRDF, the anisotropic distribution is also 
observed in the thermal images (Figure 6).  

The data presented here show that the backscatter 
view angle (with the sun in front of the camera, Figure 6, 
right sub-plot) maximized the differences between 
stressed and non-stressed plants, reaching ca. 1°C).  
When the camera was placed at the frontscatter view 
angle (with the sun behind the camera, Figure 6, left 
sub-plot) or with the angle perpendicular to the principal 
plane (frontscatter-backscatter direction, Figure 6, top 
sub-plot) the corresponding differences were less than 
0.5°C.  These temperature variations may be attributed 
to the direction of the solar radiance distribution in the 
crop canopy, but also to the canopy architecture, as the 
amount of shadowed areas in the thermal image may 
greatly influence the results.  The maximum difference 
between measurements at front- and backscatter view 
angles was 2.4°C (data not shown).  This is similar to 
the finding of Jones et al.[4], who observed 3°C higher 
temperatures of the sunlit part of grapevine plants than on 
the shaded side.  There are most likely two reasons that 
can explain the good separation between plants of two 
different water status.  One is reduced transpiration rate 
in leaves subject to water stress, due to the slower 
conductance (i.e.: [8]), whilst the second is difference in 
emissivity since drier plant have lower emissivity (ca. 
0.95) than do well-watered ones (ca. 0.98) [29]. 

The calculations performed in this experiment 
indicate that the view angle perpendicular to the principal 
plane approximates the average crop temperature best, 
but that the measurements collected at the backscatter 
view angle maximize the differences between stressed 
and non-stressed plants.  

To reduce the BRDF effect on the thermal 
measurements we suggest measuring the target from 
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various azimuth angles and simply averaging the results.  
In practice, where multi-angular measurements are not 
available, care should be taken to retain a constant 
azimuth view angle towards the sun.  A more accurate 

correction of the BRDF effect on the reflective part of the 
apparent temperature would require collecting the 
irradiation data and applying a thermal BRDF model[26]. 

 
Figure 6  Angular dependency of view geometry relative to the position of the sun illustrated on: (a) visible (RGB) and (b) thermal images 
of an irrigated and a non-irrigated (stressed) wheat canopy.  Average (i.e. across all pixels within the frame) image temperatures (μT) are 

indicated.  The measurements were performed on 04.06.2013 16:03 CET at an ambient temperature of 25.5°C, with a wind speed of  
3.8 m/s and illumination of 79.2 klux 

 

Perhaps the biggest challenge in using a thermal 
camera outdoors is related to atmospheric changes during 
measurements.  In this showcase, rapid weather 
fluctuations influenced the thermal readings (Figure 7).  
During a 90 minute measurement campaign we observed 
large fluctuations, and an increasing linear trend in the 
measured crop canopy temperatures, from around 20°C at 
the start to 22°C towards the end.  The fluctuation 
around the trend was, as expected, related to the different 
crop water treatment (irrigated vs. non-irrigated), and the 
camera view angle, as discussed above.  There were two 
major deviations from the trend, one at 15-20 minutes and 
one at around 50 minutes (Figure 7).  The former 
episode was most likely a result of increased wind speed, 
as a wind gust of 6 m/s was recorded at the nearby 
weather station at about the same time as the canopy 
temperature was reduced by about 4.5°C from the current 
trend temperature of 20.8°C (Figure 7, left arrow).  The 
slight mismatch in time may have been due to the 
distance to the weather station (200 m).  The episode 

around the 50th minute, when the canopy temperature 
dropped to 6.2°C below the current trend temperature of 
21.3°C, may be explained by a 10% decrease in 
illumination over a period of 10 minutes (Figure 7, right 
arrow), related to the passing of a low cloud. 

 
Figure 7  Apparent temperature of wheat canopies (solid line) 
measured proximally with a thermal camera during a 90 minute 

period (with overlaying linear trend, dash-dot line), covering both 
irrigated and non-irrigated plots, and wind speed (dashed line) and 
solar illumination (dotted line), as measured in a nearby weather 

station (200 m away). Two points of particular interest are 
indicated with arrows (see text for details) 
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The showcase experiment was large, so that the 
measuring time was relatively long, which implies that 
the risk of changes in the ambient conditions was high.  
Changes in the ambient conditions may, however, be 
corrected for by combining high quality weather data and 
modelling.  As shown here, instant changes of 
atmospheric conditions related to wind gusts and changes 
in irradiance (illuminance) due to clouds and aerosols 
may significantly affect thermal measurements.  The 
dependency of the apparent temperature on the 
atmospheric condition has been modeled by Leinonen et 
al.[5] and is also well-described in [25] and [6].  Based 
on the experience obtained in the present showcase, it 
appears, however, that a one-minute resolution of the 
weather data is not sufficient to correct for changes in the 
ambient conditions, even when the weather conditions are 
relatively stable.  We therefore suggest that outdoor 
proximal thermal canopy measurements require a 
one-second interval for atmospheric data acquisition at 
the measurement location, in order to obtain sufficient 
correction for disturbing factors.  This may be 
considered as one of the limiting factors of simple, 
low-cost thermal data acquisition.  
3.3.3  Outdoor remote thermal measurement of water 
stress in wheat  

The same experiment was used in this showcase as in 
the previous one, but here the thermal measurements 
were taken remotely, from an altitude of 85 meters by 
means of a UAV (Figure 8a).  The advantage of this 
setup was that a relatively large area may be covered by 
one image, thus avoiding the problem with changes in the 
ambient conditions during measuring.  The challenge 
related to the Bi-directional Distribution Function (BRDF) 
remained, however, and the remote approach also 
introduced some additional challenges. 

The raw data collected from the airborne platform 
ranged from 18.9°C to 24.2°C (Figure 8b).  The 
displayed linear thermal trend appeared to be 
geometrically related to view angles along the principal 
plane of the solar illumination (related to the solar 
azimuth angle).  The recorded temperatures were lower 
at backscatter and higher at frontscatter (Figure 8a), 
which was in accordance with the finding in the previous 

showcase.  
In order to correct for this tendency, we first tried to 

construct a single image-based trend (by finding the 
correlation between all pixel values and their position on 
the principal plane) to define the view-illumination 
anisotropy, but we did not obtain a satisfying fit.  
Instead, we defined two thermal gradients, and averaged 
them into a general trend (Figure 8b).  By subtracting 
the (position specific) general trend from the thermal 
dataset, the observed thermal trend was corrected (Figure 
8c).  After such post-processing of the data it was 
possible to separate between stressed and non-stressed 
wheat plants, as the treatment related temperature 
difference was up to 2.5°C.  The average difference 
between water stressed and non-stressed wheat canopies 
was 1.6°C.  This distinct water status separation was 
obtained even though the water stress in the plants was 
not very pronounced, due to a high precipitation level in 
the preceding weeks. 

The simple trend correction discussed above should 
be used before image rectification, which is typically 
used for view geometry correction of remotely obtained 
images[30], to prevent thermal data distortion.  An 
advantage of this simple method is that it requires less 
computation than a BRDF correction based on empirical 
or physical models[26] and is therefore suitable for basic 
applications.  Admittedly, the trend presented in Figure 
8a was relatively easy to detect, since the controlled water 
treatments, which were mainly responsible for the 
thermal differences, were arranged in a perpendicular 
direction.  If our approach is used on non-experimental 
fields we suggest finding a relative homogeneous part of 
the field, and looking for a trend in the direction of a 
principal plane there.  

Airborne thermal imaging is probably the most 
challenging application.  Typically, due to its larger 
field-of-view and larger pixel size, ‘nadir-like’ view 
angles are selected for airborne image acquisition.  This 
slightly reduces the geometry induced image anisotropy, 
compared to the typical proximal sensing application.  
The image pixels acquired using wide-view lenses are 
typically highly anisotropic.  Also, the airborne 
acquisition of imagery is influenced by the instability of 
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the platform, causing geometric image distortion, and 
influencing the viewing geometry, which must be 
corrected for in order to obtain sound results.  
Additionally, a vertical weather gradient may be present 
during measurements.  Therefore, in a specific situation, 
the height of the measurement may also influence results.  
To correct for possible instant changes of the atmospheric 
conditions at the altitude of data acquisition, which were 

not the case in our airborne experiment, we suggest 
including a set of airborne weather sensors to 
complement the ground weather station, in order to obtain 
advanced thermal measurement correction.  That is 
especially important for low-altitude acquisition 
platforms, since the analyzed temperature variation is 
local and may be influenced by surrounding large objects 
and topography. 

 
Figure 8  An outline of the airborne thermal image acquisition, showing (a) a single, raw thermal image taken from a height of 85 m at nadir 

view angle, but presented from another position here in order to illustrate the thermal gradient towards the sun.  The dashed white lines 
indicate the camera position relative to the corners and center of the image, and the white points show the data sampling points.  Further,  

(b) the apparent canopy temperatures are shown for irrigated (blue points) and non-irrigated (red points) plots, along with the corresponding 
trend lines (blue and red line, respectively, where the overall trend (i.e. the trend for all points in both treatments) is shown as a black line.  

In (c), the trend-corrected (using the overall trend for correction) canopy temperatures are shown for irrigated (blue points) and non-irrigated 
(red points) plots 

 
 

4  Conclusions 

 Changes in FPA temperature greatly affect thermal 
measurements obtained by an uncooled 
microbolometer thermal camera.  Such a camera 
should be initialized and exposed to the measuring 
environment for at least 30-40 minutes before usage. 

 Settings of gain and offset are crucial for the results, 
and the optimum combination depends on the 
temperature range of interest.  Since camera 
performance is most sensitive to the offset setting, 
the optimum offset level should be identified first. 

 Regression models may be well suited for 
transforming analog thermal video signals into 

temperature data, if robust calibration data are 
available.  We suggest creating a calibration data 
set under controlled conditions, and including 
information on FPA temperature as an independent 
variable in the model. 

 It is possible to use thermal imaging to detect 
P-stressed barley plants under controlled conditions.  
The temperature difference between stressed and 
non-stressed plants is, however, so small that other 
factors that affect canopy temperature may easily 
over-shadow the P effect. 

 Recording thermal measurements of a background 
reference is crucial in order to compensate for 
possible changes in ambient temperatures when 
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using thermal imaging in a greenhouse. 

 To reduce the effect of bi-directional light 
distribution, which represents a challenge when 
using an analog thermal camera for proximal 
measurements under field conditions, the target 
should be measured from various azimuth angles, 
and the average temperature should be used for 
further analyses.  Where multi-directional 
measurements are not available, care should be 
taken to retain a constant azimuth view angle 
towards the sun. 

 Instant changes of atmospheric conditions related to 
wind gusts and changes in irradiance (illuminance), 
due to clouds and aerosols, may significantly affect 
proximal thermal measurements performed under 
field conditions.  High quality weather data with a 
high time resolution (1 Hz) may then be needed for 
correction. 

 Thermal measurements obtained from an UAV may, 
as proximal measurements, be affected of 
bi-directional light distribution, i.e. the solar azimuth 
angle.  It is necessary to correct for trends resulting 
from this phenomenon.  Corrected data may, 
however, provide a quality which allows the user to 
distinguish between stressed and non-stressed wheat 
plants. 

 Advances in microbolometer camera technology 
reduce the cost and weight of the sensor which 
opens for a range of new applications in vegetation 
monitoring, including robotized portable 
measurement platforms.  The remotely based plant 
stress detection method presented here, may be 
suitable for small agricultural and horticultural 
enterprises that require measurement systems with 
low investment cost.  The method requires user 
skills, great care during measurements and 
appropriate correction of disturbing factors to obtain 
sufficient detection accuracy.  
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