

Nobel paradox: China's publication surge and the elusive prize

Samuel Ariyo Okaiyeto¹, Fengkui Xiong^{1,2}, Arun S. Mujumdar³,
Hongwei Xiao^{1*}, Yingkuan Wang^{4,5*}

- (1. College of Engineering, China Agricultural University, Beijing 100083, China;
2. College of Mechanical Engineering, Sichuan University of Science & Engineering, Yibin 643000, Sichuan, China;
3. Department of Bioresource Engineering, McGill University, Ste. Anne de Bellevue, Quebec, Canada;
4. Academy of Agricultural Planning and Engineering, MARA, Beijing 100125, China;
5. Chinese Society of Agricultural Engineering, Beijing 100125, China)

Abstract: China has emerged as the world's largest producer of scientific publications and a dominant force across high-impact research indicators. Yet, this extraordinary expansion has not translated into Nobel-level breakthroughs. This commentary examines the structural, institutional, and cultural factors underpinning this "Nobel paradox." China's research ecosystem is optimized for rapid scaling, publication productivity, and alignment with national policy cycles, but these strengths also generate incentives that discourage high-risk, conceptually disruptive inquiry. Comparative analysis with Japan and the United States reveals that environments producing Nobel-winning discoveries typically feature long-term stability, investigator autonomy, tolerance for failure, and mechanisms that empower early-career scientists. In China, hierarchical authorship norms, metric-driven evaluations, and risk-averse grant structures hinder the emergence of transformative ideas, despite the abundance of talent and resources. The commentary outlines reforms, such as decoupling assessment from publication metrics, creating safe harbors for high-risk research, and strengthening career pathways, that could enable China to convert its scientific capacity into world-changing discovery.

Keywords: Nobel paradox, scientific papers, China's scientific system, high-risk research, authorship structure

DOI: [10.25165/j.ijabe.20251806.10377](https://doi.org/10.25165/j.ijabe.20251806.10377)

Citation: Okaiyeto S A, Xiong F K, Mujumdar Arun S, Xiao H W, Wang Y K. Nobel paradox: China's publication surge and the elusive prize. *Int J Agric & Biol Eng*, 2025; 18(6): 290–292.

1 Significance

China produces more scientific papers than any nation in history, but has not yet converted this capacity into Nobel-level breakthroughs. This commentary examines the structural features of China's research ecosystem that reward productivity rather than originality and outlines reforms that could enable the emergence of world-shaping discoveries.

2 Commentary

China's rise as a scientific powerhouse is unprecedented in its pace and scale. Since 2021, Chinese researchers have produced more than 800 000 scientific papers, far more than the roughly 600 000 generated by the United States^[1]. Beyond SCI outputs, Chinese domestic journals also publish a substantial volume of research and application-driven work that closely aligns with the country's scientific realities and industrial priorities. These non-SCI

publications, frequently oriented toward agriculture, engineering, materials, and other mission-driven fields, reflect meaningful advances that may not appear in international databases but are central to China's technological progress^[2]. Together, the rapid expansion of SCI papers and the growing influence of Chinese-language journals demonstrate the continued strengthening of China's research capacity, scientific relevance, and global impact. Its contribution to the world's top 1% most-cited papers has climbed from nearly zero in 2000 to 27% in 2022^[3]. This dominance has now extended to the very highest tier of research impact: the Nature Index 2025 Research Leaders (covering publications from 1 January to 31 December 2024 in 145 top-tier natural- and health-science journals) shows the Chinese Academy of Sciences retaining the global #1 position with a Share of 3106.874, more than double Harvard's second-place score of 1119.716. Fourteen of the world's top 20 research institutions are now Chinese, including Tsinghua University (7th globally), with a total of 26 Chinese entities in the top 50 (as listed in Table 1), much more than any other country has ever achieved in the index's history^[4]. These numbers reflect real competence: China leads the world in artificial intelligence publications, quantum communication trials, battery chemistry breakthroughs, and global patent filings. Yet despite these achievements, China's absence from the most prestigious scientific awards remains conspicuous. Since 2000, Japan has won 24 Nobel Prizes in chemistry, physics, and physiology/medicine; the United States has won 128; China has just won one for work conducted domestically. This disparity highlights the "Nobel paradox". An extraordinary capacity without commensurate singular breakthroughs is not about scientific talent, but rather prompts a deeper examination of how national research ecosystems cultivate

Received date: 2025-12-03 Accepted date: 2025-12-12

Biographies: Samuel Ariyo Okaiyeto, PhD candidate, research interest: food drying technology and equipment, Email: samuelariyo496@gmail.com; Fengkui Xiong, Associate Professor, research interest: food drying technology and equipment, Email: xfk@suse.edu.cn; Arun S. Mujumdar, Professor, research interest: drying fundamental research and applications, Email: arunmujumdar123@gmail.com.

***Corresponding author:** Hongwei Xiao, Professor, research interest: agricultural products processing technology and equipment. College of Engineering, China Agricultural University, No.17, Qinghua East Road, Beijing 100083, China. Tel: +86-10-62736900, Email: xhwcaugxy@163.com; Yingkuan Wang, PhD, Professor, Editor-in-Chief, research interest: agricultural engineering, journalism. Maizidian 41, Chaoyang District, Beijing 100125, China. Tel: +86-10-59197088, Email: wangyingkuan@163.com.

Table 1 Nature Index 2025 Top 50 institutions

Position	Institution	Country/ territory	Count	Share
1	Chinese Academy of Sciences (CAS)	China	10 824	3106.874
2	Harvard University	USA	3835	1119.716
3	University of Science and Technology of China (USTC)	China	3108	973.5332
4	Zhejiang University (ZJU)	China	2465	965.8316
5	Peking University (PKU)	China	3561	893.577
6	University of Chinese Academy of Sciences (UCAS)	China	4404	887.5166
7	Tsinghua University	China	2996	865.9713
8	Shanghai Jiao Tong University (SJTU)	China	2376	838.9431
9	Nanjing University (NJU)	China	2166	830.0748
10	Fudan University	China	2126	754.7397
11	Max Planck Society	Germany	2976	740.1675
12	Sichuan University (SCU)	China	1357	722.8456
13	Sun Yat-sen University (SYSU)	China	1775	683.9487
14	French National Centre for Scientific Research (CNRS)	France	4805	667.1734
15	Stanford University	USA	2032	602.5716
16	Helmholtz Association of German Research Centres	Germany	3030	597.2403
17	Massachusetts Institute of Technology (MIT)	USA	2168	518.7035
18	Jilin University (JLU)	China	1052	516.5016
19	Huazhong University of Science and Technology (HUST)	China	1103	493.7015
20	Nankai University (NNU)	China	1307	487.4766
21	Shandong University (SDU)	China	1402	462.5406
22	Wuhan University (WHU)	China	1040	457.3734
23	The University of Tokyo (UTokyo)	Japan	1328	450.7538
24	Southern University of Science and Technology (SUSTech)	China	1207	443.9038
25	University of Oxford	UK	1790	443.1658
26	Soochow University	China	967	433.2392
27	Xiamen University (XMU)	China	942	429.7389
28	National Institutes of Health (NIH)	USA	1206	422.2607
29	University of Cambridge	UK	1529	401.758
30	Xi'an Jiaotong University (XJTU)	China	895	389.9257
31	Tongji University	China	1046	378.281
32	Central South University (CSU)	China	857	377.7533
33	University of Toronto (U of T)	Canada	1253	375.6209
34	Swiss Federal Institute of Technology Zurich (ETH Zurich)	Switzerland	1115	373.8286
35	University of Michigan (U-M)	USA	1384	373.2359
36	South China University of Technology (SCUT)	China	812	371.3929
37	Tianjin University (TJU)	China	1194	369.484
38	Yale University	USA	1321	368.0495
39	University of California, San Diego (UC San Diego)	USA	1178	367.8362
40	University of Pennsylvania (Penn)	USA	1248	363.7154
41	University of California, Berkeley (UC Berkeley)	USA	1447	363.1694
42	University of California, Los Angeles (UCLA)	USA	1326	362.7364
43	Cornell University	USA	1224	342.0493
44	Northwestern University (NU)	USA	1024	337.2127
45	Johns Hopkins University (JHU)	USA	1395	335.7478
46	National University of Singapore (NUS)	Singapore	1227	334.2452
47	Hunan University (HNU)	China	706	330.7606
48	University of Washington (UW)	USA	1449	329.2306
49	Columbia University (CU)	USA	1272	325.8066
50	Harbin Institute of Technology (HIT)	China	690	323.9201

Source: Nature Index^[4].

transformative discoveries.

Raw intellectual horsepower is not the missing ingredient. Chinese scientists are among the world's most productive and well-trained, and China's laboratories have become global destinations for graduate students and postdoctoral researchers. Rather, the gap lies in structure: the institutional and incentive architectures that shape how scientific work is conceived, evaluated, and sustained over time. Japan's Nobel-winning research, whether Yamanaka's induced pluripotent stem cells, Yoshino's lithium-ion battery chemistry, or Kajita's neutrino oscillation measurements, emerged from environments that balanced long time horizons with intellectual autonomy and organizational stability. These discoveries matured over decades within small teams insulated from bureaucratic turbulence. China's scientific system, in contrast, has been optimized for rapid expansion, measurable productivity, and national research targets mapped onto 5-year policy cycles. This architecture, while extraordinarily successful at scaling the research enterprise, is less conducive to the slow, uncertain, and often counterintuitive pathways that lead to Nobel-level breakthroughs.

The most consequential dynamic is incentive misalignment. Promotion and hiring in many Chinese research institutions remain anchored to quantitative output: faculty often need to publish between five and ten papers annually in journals with specific impact-factor thresholds. The "Double First-Class" initiative, China's flagship university funding program, ties institutional resources to international rankings, which emphasize publications and citations over conceptual originality. These metrics helped China catch up rapidly during the 2000s, but now create unintended distortions. A 2022 national survey found that 68% of Chinese academics felt pressured to prioritize publication quantity over the consideration of risky or unconventional ideas^[5]. Under such conditions, even highly capable researchers gravitate toward incremental, proven topics that maximize funding and career security. In contrast, major Japanese institutions such as RIKEN, Kyoto University, and the University of Tokyo provide tenure-track scientists with extensive autonomy, sabbaticals, and evaluation systems that emphasize long-term contributions rather than short-term productivity. Similarly, the United States' enduring leadership is underpinned by a diverse ecosystem that includes long-term, high-prestige grants from the National Institutes of Health and National Science Foundation, which tolerate initial failure in pursuit of high gain, and the freedom afforded to investigators at elite private and public universities. The Howard Hughes Medical Institute, for example, explicitly seeks out and funds "people, not projects," providing scientists with the autonomy and stability that are the bedrock of revolutionary science. This stability allows researchers to nurture slow-developing ideas, often the precursors to scientific revolutions.

Risk aversion follows naturally from China's incentive structure. Transformative science, almost by definition, requires long periods of failure. Many Nobel-winning projects originated as fringe ideas: Polymerase chain reaction (PCR) began as a "crazy idea" dismissed by senior scientists^[6]; superconductivity research repeatedly stalled before breakthroughs emerged; CRISPR's potential was not immediately apparent to major reviewers^[7]. Yet China's grant ecosystem heavily favors conservative proposals supported by preliminary data. With national grant success rates around 15%, compared with nearly 25% in Japan's JSPS programs, Chinese scientists face strong incentives to propose feasible, low-risk projects unlikely to be rejected. Chinese grants show lower thematic diversity than Japanese peers^[8]. This indicates an ecosystem in which researchers cluster around established, "safe"

directions that maximize approval prospects. Yamanaka's discovery of induced pluripotent stem cells, first reported in *Cell* and widely highlighted in *Nature*^[9], was one of the most influential biomedical advances in decades but was initially rejected twice by JSPS before receiving support as a speculative, high-risk side project. Yoshino's development of the lithium-ion battery, a technology that reshaped modern society^[10], and Kajita's neutrino oscillation measurements, a discovery that made the cover of *Nature*^[11], similarly benefited from tolerant funding environments. A comparable pathway would be exceedingly difficult under China's standard review criteria, which emphasize feasibility, deliverables, and predictable publication output.

Historical and cultural factors widen this divergence. Japan's postwar research system was designed to protect basic science budgets from political fluctuations. The country's 1950s income-doubling plan, though focused on economic expansion, created stable research institutions at the University of Tokyo, Osaka University, and RIKEN that were explicitly insulated from short-term performance mandates. China's research ecosystem, by contrast, is much younger and still evolving. Its major national research programs, Project 211, Project 985, and the Double First-Class initiative are overwhelmingly oriented toward rapid development, expanded institutional visibility and capacity, and enhanced global competitiveness, as opposed to supporting high-risk, unconventional research, or scientifically solitary pursuits. As a result, Chinese laboratories often maintain hierarchical authorship norms where senior principal investigators, rather than young researchers, serve as corresponding authors or claim primary conceptual credit. Comparative bibliometric analyses show that roughly 25% of Japan's Nobel-related papers had first authors under age 35, a proxy for intellectual leadership among young researchers, whereas the equivalent figure for China is only 8%^[12]. This matters: Nobel-level ideas often originate from early-career scientists with fewer entrenched assumptions and greater willingness to explore speculative ideas.

China's scientific evaluation reforms require structural adjustments to promote breakthrough research, such as decoupling evaluation from publication metrics and focusing on holistic assessments of significance and creativity. Establishing safe harbors for high-risk research, along with long-term funding initiatives like the National Institute of Biological Sciences and Tencent's New Cornerstone Investigator Program, can foster innovation. Additionally, reforming authorship and credit systems is vital for empowering young investigators through mandatory contribution statements and transparency in authorship roles, with Japan's 2023 ethics updates promoting such transparency^[13]. Finally, fostering an international scientific workforce with joint laboratories and durable career pathways can deepen the integration of returnees, as shown by Japan's successful retention of its overseas-trained scientists through the "Top Global University" initiative.

These reforms are not merely aspirational; they are strategically critical if China aims to translate its remarkable scientific capacity into world-changing discovery. Nobel Prizes are not the ultimate measure of scientific success, but they serve as reliable markers of environments that support deep originality. The typical lag between

discovery and Nobel recognition is approximately 20 years. If China implements reforms that enable today's 30-year-old postdoc to pursue ambitious, high-risk ideas without fearing career derailment, the country's first domestically earned Nobel Prizes in the sciences could plausibly emerge by 2040. Japan required roughly 25 years from the introduction of its postwar research reforms in the 1970s to its surge in Nobel Prizes beginning in 2000. Given China's vastly greater resources, the timeline could be shorter. But cultivating Nobel-level breakthroughs requires a shift from an ecosystem optimized for growth to one optimized for originality.

China stands at an inflection point. It possesses unparalleled scientific manpower, state-of-the-art laboratories, and vast financial resources. What it now requires is patience, structures that allow ideas to evolve slowly, unpredictably, and sometimes inefficiently; evaluation systems that reward daring rather than compliance; and institutional cultures that grant young scientists both ownership and freedom. The United States maintains global leadership in part because its decentralized, competitive system tolerates and even celebrates intellectual eccentricity; Japan succeeds because its stable, respectful system protects continuity and deep specialization. China, uniquely positioned, can synthesize both: immense scale coupled with strategic serenity. Until such alignment is achieved, publication curves will continue to rise, yet the Stockholm podium will remain symbolically and structurally out of reach.

References

- [1] Clarivate Analytics. Web of Science, 2024. Available at <https://clarivate.com/news/clarivate-report-reveals-china-challenging-u-s-research-dominance-signaling-future-research-ambitions/>
- [2] China Association for Science & Technology, and Institute of Scientific and Technical Information of China. Blue Book on the Development of Chinese Scientific and Technical Journals (CASTIST 2024). Science Press, Available at <https://www.cast.org.cn>
- [3] National Science Foundation. Science & Engineering Indicators, 2024. Available at <https://neses.nsf.gov/pubs/nsb20257/assets/nsb20257.pdf>
- [4] Nature Index Institution Rankings, 2025. Available at <https://www.nature.com/nature-index/institution-outputs/generate/all/global/all>
- [5] Nature Index. Academic Survey China, 2023. Available at <https://www.theguardian.com/world/2023/may/24/china-overtakes-us-in-contributions-to-nature-and-science-journals>
- [6] Saiki R K, Gelfand D H, Stoffel S, Scharf S J, Higuchi R, Horn G T, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science*, 1988; 239(4839): 487–491.
- [7] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science*, 2012; 337(6096): 816–821.
- [8] Mathias W N, Jens P A. Global citation inequality is on the rise. *PNAS*, 2021; 118(7): e2012208118.
- [9] Cyranoski D. Stem cells: 5 things to know before jumping on the iPS bandwagon. *Nature*, 2006; 452(7186): 406–408.
- [10] Grey C P, Tarascon J M. Sustainability and in situ monitoring in battery development. *Nature Materials*, 2017; 16(1): 45–56.
- [11] Collaboration S K, Al Y E. Evidence for oscillation of atmospheric neutrinos. *Physical Review Letters*, 1998; 81(8): 1562.
- [12] Clarivate Analytics. Web of Science Core Collection: Bibliometric dataset on authorship patterns in Nobel-related publications (Custom data extraction, 2024). Available at <https://www.webofscience.com>
- [13] JSPS. Research Integrity, 2023. Available at <https://www.jsps.go.jp/english/e-kousei/index.html>