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Abstract: A brief review of research in agricultural vehicle guidance technologies is presented.  The authors propose the 
conceptual framework of an agricultural vehicle autonomous guidance system, and then analyze its device characteristics. 
This paper introduces navigation sensors, computational methods, navigation planners and steering controllers.  Sensors 
include global positioning systems (GPS), machine vision, dead-reckoning sensors, laser-based sensors, inertial sensors 
and geomagnetic direction sensors.  Computational methods for sensor information are used to extract features and fuse 
data.  Planners generate movement information to supply control algorithms.  Actuators transform guidance information 
into changes in position and direction.  A number of prototype guidance systems have been developed but have not yet 
proceeded to commercialization.  GPS and machine vision fused together or one fused with another auxiliary  
technology is becoming the trend development for agricultural vehicle guidance systems.  Application of new popular 
robotic technologies will augment the realization of agricultural vehicle automation in the future. 
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1  Introduction  

Over history, agriculture has evolved from a manual 
occupation to a highly industrialized business, utilizing a  
wide variety of tools and machines[1].  Researchers are 
now looking towards the realization of autonomous 
agricultural vehicles.  The first stage of development, 
automatic vehicle guidance, has been studied for many 
years, with a number of innovations explored as early as 
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the 1920s[2,3].  The concept of fully autonomous 
agricultural vehicles is far from new; examples of early 
‘driverless tractor’ prototypes using leader cable guidance 
systems date back to the 1950s and 1960s [4]. 

In the 1980s, the potential for combining computers 

with image sensors provided opportunities for machine 
vision based guidance systems.  During the mid-1980s, 
researchers at Michigan State University and Texas A&M 

University were exploring machine vision guidance.  
Also during that decade, a program for robotic harvesting 

of oranges was successfully performed at the University 

of Florida[5].  In 1997, agricultural automation had 
become a major issue along with the advocacy of 

precision agriculture.  The potential benefits of 

automated agricultural vehicles include increased 
productivity, increased application accuracy, and 
enhanced operation safety.  Additionally, the rapid 

advancement in electronics, computers, and computing 

technologies has inspired renewed interest in the 
development of vehicle guidance systems.  Various 
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guidance technologies, including mechanical guidance, 

optical guidance, radio navigation, and ultrasonic 
guidance, have been investigated[6,7]. 

Table 1 summarizes examples of research systems 
that have been developed around the world.  Autonomous 

navigation system for agricultural vehicles is now 
regarded as an important advance in precision agriculture 
and a promising alternative to the dwindling farming 
labor force, in addition to satisfying the quest for higher 
production efficiency and safer operation [6, 8]. 

 

Table 1  Examples of guidance systems developed around the world 

Institute (Country) Sensor Machine or test device Performance results Literature 

University of Illinois, USA Machine vision, GPS,  
GDS 

Case 8920 MFD and 2WD  
Tractors Vision guidance at 16 km/h on row crops Zhang[9,10] 

Benson[11,12] 

Stanford University, USA GPS John Deere 7800 Tractor 1° accuracy in heading, line tracking accuracy with  
2.5 cm deviation O’Connor[13] 

University of Florida, USA GPS, laser radar Tractor Average error of 2.8 cm using machine vision guidance 
and average error of 2.5 cm using radar guidance Subramanian[14] 

University of Halmstad, Sweden Machine vision,  
Mechanical sensor, GPS Tractor with row cultivator Standard deviation of 

position of 2.7 and 2.3 cm Åstrand[15,16] 

Bygholm Research Center,  
Denmark Machine vision Tractor Accuracy of less than 12 mm Søgaard[17] 

University of Tokyo, Japan FOG, Ultrasonic  
Doppler sensor Tractor (Mitsubishi Co.) Lateral displacement from the reference line was less  

than 10 cm at speeds of 0.7 to 1.8 m/s on a straight line Imou[18] 

National Agriculture Research  
Center, Japan RTK GPS, FOG PH-6, Iseki Co., Ehime  

transplanter 
Less than 12 cm, yaw angle offset of about 5.5 cm at  
2.52 km/h Nagasaka[19] 

BRAIN, Japan  Machine vision and  
laser range sensor Tractor Error about 5 cm at the speed of 0.4 m/s Yukumoto[20] 

Hokkaido University, Japan GDS, laser scanner Tractor Average error less than 1 cm Noguchi [21,22] 

National Centre for Engineering 
 in Agriculture, Australia Machine vision Tractor Accuracy of 2 cm Billingsley[23] 

 
Research on autonomous agricultural vehicles has 

become very popular, and the robotics industry has 

developed a wide range of remarkable robots.  In the 

near future, farmers will be using affordable, dependable 

autonomous vehicles for agricultural application. 

Section 2 includes an analysis of the device 

characteristics of agricultural vehicle guidance systems.  

A brief overall review of the past 20 years of global 

research in agricultural vehicle guidance technologies is 

presented in terms of a framework for agricultural vehicle 

autonomous guidance systems, as shown in Figure 1.  

The key elements are navigation sensors, computational 

methods, navigation planners and steering controllers. 

The final section addresses some of the barriers to 

development and discusses the potential for new 

development. 

2  Features of agricultural vehicle devices 

The agricultural environment offers a very different 

set of circumstances from that encountered by a 

laboratory mobile robot.  In one respect, operation is 

simplified by the absence of clutter typically present in 

the indoor environment; however, a number of additional 
complications are raised.  For example, the operating 

areas are large; ground surfaces may be uneven; 

depending on the operation, and wheel slippage may be 

far from negligible. Cultivation may interfere with 

underground cables, colors may change with plant growth, 

and soil quality may vary. Environmental conditions (rain, 

fog, dust, etc.) may affect sensor function; moreover, a 

low-cost system is required. 

These disadvantages make it more difficult to realize 
agricultural automation.  Companies are unwilling to 

invest in commercialization because it is not seen as a 

worthwhile money-making venture, and farmers are not 
financially able to participate.  Other major reasons 

include the need to improve the technology and decrease 

the cost [24]. 
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Figure 1  Framework of agricultural vehicle autonomous guidance 

system 
 

Compared with these complicating factors, 
agricultural farm fields have several advantages for 
developing autonomous guidance systems.  For example, 
the working areas generally do not change; landmarks can 
be easily set up around the corners of a field and be taken 
as a stationary environment.  The crops are always the 
same plants at the same places and can be easily 
distinguished.  Therefore, even though there are more 
disadvantages than advantages for realizing agricultural 
vehicle autonomous guidance, there are enough research 
achievements to promote its development. 

3  Navigation sensors 

3.1  Machine vision 
Machine vision sensors measure the relative position 

and heading using the image sensor mounted on the 
vehicle.  There are several aspects of machine vision 
based sensing.  Different types of sensor modalities can 
be selected to measure the guidance information. 
Positioning of the sensor on the vehicle requires an 

understanding of the geometric relationship between the 
image sensor, the vehicle and the field-of-view that the 
sensor uses for guidance information.  Figure 2 shows 
one example. Researchers have explored the use of vision 
sensors for detecting a guidance directrix on row crops, 
soil tillage, and the edges along harvested crops.  
Various methodologies of image processing have been 
investigated for extracting the guidance information.  
The processed images provide output signals that can be 
used to provide steering signals for the vehicle. 

 
Figure 2  Row detection via segmented binary image [25] 

 

One of the most commonly used machine vision 
methods is for detecting a guidance directrix on row 
crops, soil tillage, and the edges along harvested crops. 
Benson[12] developed a guidance combine harvester based 
on the lateral position of the crop cut edge.  Marchant 
and Brivot[26] used the Hough transform for row tracking 
in real time (10 Hz) and noted that their technique was 
tolerant to outliers (i.e., weeds) only when their number 
was reasonably small compared to the number of true 
data points.  Marchant [27] reported an overall RMS error 
of 20 mm in the lateral position at a travel speed of    
0.7 m/s using this technique to guide an agricultural 
vehicle in a transplanted cauliflower field. 

The threshold method has been applied in many 
vision applications to separate objects of interest from 
imagery.  For reliably extracting crop row features from 
field images, the major challenge of the threshold method 
is the difficulty in determining an adequate effective 
threshold value under varying ambient light conditions or 
changing crop growth stages.  The effectiveness of 
distinguishing crops from weeds is another challenge in 
determining a pathway using the obtained field images. 
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Research has been reported on attempts to improve the 
reliability of crop feature extraction and pathway 
determination for vision-based guidance systems.  
Hague and Tillett [28] exploited a method using a bandpass 
filter to attenuate the grey level of weeds and shadows in 
field images. Pinto et al.[29] attempted to apply the 
principal component analysis method to extract crop row 
features from field images.  Søgaard and Olsen[7] also 
developed a machine vision guidance method that did not 
require a plant segmentation step, replacing it with a less 
intensive computation of the center of gravity for row 
segments in the image and weighted linear regression to 
determine the position and orientation of the rows. 

Han et al. [25] developed a row segmentation algorithm 

based on k-means clustering to segment crop rows.  This 
information was then used to steer a tractor.  The guided 
tractor was able to perform field cultivation in both 
straight and curved rows.  Okamoto et al. [30] developed 

an automatic guidance system for a weeding cultivator.  
A color CCD camera acquired the crop row images, 
which were then processed by computer and used to 
determine the offset between the machine and the target 
crop row. 

Other techniques and systems have been investigated 
for machine vision guidance, and many of them have 

improved the robustness and dependability of machine 
vision.  Yukumoto et al.[20] developed a tillage robot 
with vision and laser range sensor.  They used laser 
sensor to improve the robustness.  Billingsley and 

Schoenfisch[23] reported a vision guidance system that is 
relatively insensitive to additional visual ‘noise’ from 
weeds.  They used linear regression in each of three crop 
row segments and a cost function analogous to the 
moment of the best-fit line to detect lines fitted to outliers 
(i.e., noise and weeds) as a means of identifying row 
guidance information.  They showed that their system is 
capable of maintaining an accuracy of 2 cm. 

Tillett and Hague[31] developed a machine vision 
guidance system for cereal crops, using the midpoints of 
15 rows extracted from a single view of three adjacent 
crop rows (five midpoints per row).  They tested the 
system in a single barley field with light to moderate 
weed pressure under uniform natural lighting and 

obtained a standard error in hoe position of 13 mm at 
travel speeds up to 6 km/h. Hague and Tillett [28] used the 
analysis of the periodic near-infrared intensity function in 
a lateral path across five wheat rows in a plane view of 

the field rather than a traditional row segmentation 
method to obtain row guidance information.  They 
obtained a root-mean-square (RMS) position error of 15.6 

mm at a travel speed of 5.8 km/h. 
For more complete crop or field information, some 

researchers used a stereovision system to provide a 
three-dimensional (3D) field image by combining two 
monocular field images taken simultaneously from a 
binocular camera.  Such 3D images are reconstructed 
based on the different-disparity monocular images to 
decrease the ambient light influence.  Kise et al.[32] 
developed a stereovision-based agricultural machinery 
crop-row tracking navigation system.  The RMS error of 
lateral deviation was 3–5 cm following both straight and 
curved rows at speeds up to 3.0 m/s.  The method 
required some weed-free areas to provide sufficient 
information for detecting the navigation points. 

Åstrand and Baerveldt[16] developed a machine vision 
guidance system that achieved good performance in 
detecting plants in near-infrared images acquired under 
non-uniform natural illumination by performing grayscale 
opening on the raw near-infrared image and subtracting it 
from the original prior to segmentation.  Their method, 
based upon the Hough transform, used multiple 
rectangular regions (one for each row viewed) with the 
rectangle width adjusted for crop size.  The information 
from multiple rows was fused together to obtain a 
common estimate of the row position.  The accuracy of 
position estimation was less than 1.2 cm with a standard 
error depending on plant size.  Field tests showed that 
the system had sufficient accuracy and speed to control 
the cultivator and mobile robot in a closed-loop fashion 
with a standard deviation of position of 2.7 and 2.3 cm, 
respectively, with incomplete row structures due to 
missing plants combined with high weed pressure (up to 
200 weeds/m2). 

Kaizu and Imou [33] developed a dual-spectral camera 
system, shown as Figure 3, for paddy rice seedling row 
detection.  The system used a pair of low-cost 
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monochrome cameras with different spectral filters.  It 
matched a near-infrared image and a red image and it 
worked in the strong reflections on the water surface 
under cloudy conditions from morning to dusk. 

 
Figure 3  Schematic diagram of dual-spectral camera system[33] 

 
3.2  Global positioning system 

Since the early 1990s, Global Positioning System 
(GPS) receivers have been widely used as global 
guidance sensors[34-37].  GPS-based guidance technology 
can be used for many field operations such as sowing, 
tilling, planting, cultivating, weeding and harvesting[38,39]. 
GPS-based navigation systems are the only navigation 
technologies that have become commercially available 
for farm vehicles.  Many tractor manufacturing 
companies now offer the Real-Time Kinematic (RTK) 
GPS based auto steering system as an option on their 
tractors.  The position information from the RTK GPS 
can be used for both guidance and other applications such 
as seed mapping, traffic control, and tillage control.  
GPS guidance systems provide an absolute guidance 
system in contrast to the relative guidance provided by 
machine vision, which requires that the crop be planted 
using a GPS-guided planting system or the crop rows 
mapped using some type of geo-referenced mapping 
technique.  GPS guidance systems also require that a 
GPS base station be located within approximately 10 km 
of the RTK GPS guided tractor or agricultural robot. 
However, since GPS systems do not depend upon the 
visual appearance of the crop, they are not adversely 
affected by weed density, shadows, missing plants or 
other conditions that degrade the performance of machine 
vision guidance systems.  Another advantage of GPS 

guidance systems is that they can be easily programmed 
to follow curved rows[40]. 

There appear to be three limitations to using GPS for 
vehicle guidance.  The first is that GPS guidance 
systems cannot be used in microwave-shielded areas. 
Also, GPS cannot promise consistent positioning 
accuracy in the range of centimeters for a variety of field 
conditions (e.g., presence of buildings, trees or steeply 
rolling terrain, and interruption in satellite or differential 
correction signals).  The second limitation is the 
inherent time delay (data latency) required for signal 
processing to determine locations that might present 
control system challenges at higher field speeds.  The 
third is the high cost for agricultural application (although 
there is a consistent trend of cost reduction with 
widespread use).  However, with the anticipated 
technology developments, these limitations will 
undoubtedly be overcome, thereby making GPS a choice 
candidate for incorporation into vehicle guidance 
systems. 

Stoll and Kutzbach[41] studied the use of the RTK GPS 
as the only positioning sensor for the automatic steering 
system of self-propelled forage harvesters.  They found 
that the standard deviation of steering was less than   
100 mm under all conditions.  Standard deviation of 
lateral offset (error) along straight-line paths ranged from 
25 to 69 mm depending upon the travel speed. 

Kise et al.[42,43] studied the use of an RTK GPS 
guidance system for control of a tractor as an autonomous 
vehicle traveling along a curved path.  Test results for 
following a sinusoidal path with a 2.5-m amplitude and 
30-m wavelength at 6.5 km/h showed a 6-cm RMS error 
with a 13-cm maximum error.  To compensate for GPS 
positioning error associated with machinery attitude, 
researchers at Hokkaido University integrated an inertial 
measurement unit (IMU) with an RTK GPS to provide 
more accurate navigation information.  This integrated 
navigation system could guide agricultural machinery 
performing all field operations, including planting, 
cultivating and spraying, at a travel speed of up to 3 m/s, 
with a tracking error of less than 5 cm on both straight 
and curved paths. 

Ehsani et al.[44] evaluated the dynamic accuracy of 
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several low-cost GPS receivers with the position 
information from an RTK GPS as reference.  They 
found that these receivers had an average absolute 
cross-track error of around 1 m when traveling in a 

straight line.  GPS cannot be effectively used for 
positioning in citrus applications since the vehicle 

frequently moves under the tree canopy, which blocks the 
satellite signals to the GPS receiver.  Moreover, a system 

using GPS for guidance requires that a predetermined 
path be given for the vehicle to follow. Consequently, 
significant time must be spent in mapping its path. 

Nagasaka et al.[19] used an RTK GPS for positioning, 
and fiber optic gyroscope (FOG) sensors to maintain 

vehicle inclination, for an automated six-row rice 
transplanter (Figure 4).  Root-mean-square deviation 

from the desired straight path after correcting for the yaw 
angle offset was approximately 55 mm at a speed of   

0.7 m/s.  The maximum deviation from the desired path 
was less than 12 cm. 

 
Figure 4  Automated rice transplanter [19] 

 
3.3  Dead-reckoning sensors 

Dead-reckoning sensors are inexpensive, reliable 
sensors for short-distance mobile robots, using a simple 
mathematical procedure for determining the present 
location of a vehicle by advancing a previous position 
through a known course and velocity information over a 
given length of time.  The simplest form of dead 
reckoning is referred to as odometry.  However, 
odometry is the integration of incremental motion 
information over time, which inevitably leads to the 
unbounded accumulation of errors. Specifically, 
orientation errors will cause large lateral position errors, 

which increase proportionally with the distance traveled 
by the robot.  Despite these limitations, researchers use 
odometry as an important part of robot navigation 
systems[45,46]. 

Doppler sensors use the principle based on the 

Doppler shift in frequency observed when radiated 
energy reflects off a surface that is moving relative to the 
emitter.  This type of sensor can decrease some of the 
errors arising from wheel slippage, tread wear, and/or 

improper tire inflation.  Imou et al.[18] developed an 
autonomous tractor using an ultrasonic Doppler speed 
sensor and gyroscope.  The results showed that the 

maximum lateral displacement from the reference line 
was less than 10 cm at a speed of 4 steps from 0.7 to   
1.8 m/s on 50-m straight driving tests. 

Imou et al. [47,48] developed a new ultrasonic Doppler 
sensor to achieve high accuracy when measuring the 
speeds of both forward and reverse motions including 
low-speed motions. 

3.4  Laser-based sensors 
Laser-based sensors have a relatively longer range and 

higher resolution.  The guidance systems need three or 
more reflectors (landmarks) around the work field.  The 
time at which the laser beam is detected is communicated 

to the guidance system, which uses triangulation to define 
the location of the vehicle.  The system is insensitive to 
environmental conditions, e.g., strong light change for 

machine vision and microwave shadowing for GPS, 
which will make the system inoperable.  However, 
laser-based sensor systems have two drawbacks.  They 
do not work well if the position is changed for any of the 

artificial landmarks.  If natural landmarks are used in the 
navigation process, map updating is necessary in order to 
register the landmarks in the map building operation. The 
second problem is noisy laser measurements when the 

vehicle is traveling on uneven ground. 
Holmqvist [49] used a laser-optic navigation system for 

a vehicle moving at a speed of 2 m/s.  With an average 
distance to the reflectors of 50 m, the absolute position 
error will typically be about 5 cm in each of the X, Y and 
Z directions. Ahamed et al. [50] used laser radar for 
developing a positioning method using reflectors for 
infield road navigation.  They tested differently shaped 
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reflectors to determine the accuracy in positioning.  
Junya et al. [51] used a single-laser distance sensor for 
vehicle navigation experiments, in which the vehicle 
repeated stop-and-go driving, stopping every 1 m for a 
distance of 20 m.  The calculated RMS localization error 
in stopping was about 6 mm in the traveling direction and 
about 12 mm in the transverse direction. 

Because the tree canopy frequently blocks the satellite 
microwaves to the GPS receiver, laser-based sensors are 
widely applied in orchards. Barawid et al. [52] developed 
an automatic guidance system for navigating between tree 
rows.  Their research used a 56-kW agricultural tractor, 
2D laser scanner, RTK GPS and FOG.  The results 
showed an accuracy of 11 cm lateral error and 1.5° 
heading error. Subramanian[14] developed an autonomous 
guidance system for citrus grove navigation based on 
machine vision and laser radar.  An average error of 2.8 
cm using machine vision guidance and 2.5 cm using 

radar guidance was observed during vehicle testing on a 

curved path at a speed of 3.1 m/s. 
Tofael [53] developed a complex autonomous tractor 

system with a laser rangefinder, RTK GPS and gyroscope. 
The results of field experiments using the laser 
rangefinder showed a lateral error of less than 2 cm and a 
heading error of less than 1°.  The accuracy was very 
high. 
3.5  Inertial sensors 

Inertial sensors take measurements of the internal 
state of the vehicle.  A major advantage of inertial 
sensors is that they are packaged and sealed from the 
environment, which makes them potentially robust under 
harsh environmental conditions.  The most common 
types of inertial sensors are accelerometers and 
gyroscopes.  Accelerometers measure acceleration 
relative to an inertial reference frame.  This includes 
gravitational and rotational acceleration as well as linear 
acceleration.  Gyroscopes measure the rate of rotation 
independent of the coordinate frame.  They can also 
provide 3D position information and have the potential to 
detect wheel slippage.  Unfortunately, these types of 
sensors are prone to positional drift [54]. 

Inertial sensors have been used in a number of vehicle 
applications[19,55,56].  The most common application is in 

the use of a heading gyro (e.g., Imou et al. [18]; Barawid et 
al. [52]; Ishida et al. [57]). 

Inertial sensors are mostly used in combination with 
GPS or machine vision.  Zhang and Reid [9] presented an 
on-field navigation system with a vision sensor, FOG and 
RTK GPS.  The results indicated that the multiple sensor 
based agricultural navigation system was capable of 
guiding a tractor between crop rows and showed that the 
inertial sensor was a good assistant function. 

Noguchi et al. [21] developed an agricultural navigation 
system consisting of an RTK GPS and an inertial 
measurement unit.  Experiments conducted in a soybean 
field for tilling, planting, cultivating and spraying 
demonstrated that the accuracy of the vehicle surpassed 
that of skilled farmer operation.  The lateral error of the 
guided vehicle was less than 5 cm. 
3.6  Geomagnetic direction sensor (GDS) 

A geomagnetic direction sensor (GDS) is a 
magnetometer that senses the earth’s magnetic field. It 
can be used as a heading sensor similar to an electronic 
compass[6].  The GDS is generally used to supplement 
other sensors. 

Noguchi et al.[58] used a GDS to provide heading 
information to a tillage robot.  Benson et al. [11] used 
GPS with GDS for vehicle guidance along straight 
directional lines.  One limitation of GDS sensors is the 
influence of external electromagnetic interference from 
the outside environment, such as from a nearby set of 
high-tension electrical wires or the vehicle heater/air 
conditioner fan.  However, by controlling these error 
sources, they were able to combine GDS with a 
medium-accuracy GPS system (20 cm) and track a 
straight line with an average error of less than 1 cm.  
The maximum overshoot for a 3-m step response was 
12%, compared to 50% for GPS alone. 

The feasibility of correlating GDS with sensor 
applications for agricultural guidance systems has been 
researched.  Harper and Mckerrow[59] used a frequency- 
modulated ultrasonic sensor to detect plants, setting up a 
plant database with a return signal containing information 
about the geometric structure of the plants to improve 
navigation.  Yekutieli and Pegna [60] used a sensing arm 
to detect plants in the path for guidance in a vineyard. 
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However, using an arm would require that citrus groves 
be even with continuous canopy.  There are also 
concerns about damaging the tree branches.  Ultrasonic 
sensors are used for guidance in greenhouses, but they 
require that the target be perpendicular to the sensor for 
the ultrasonic waves to be reflected back properly 
(Subramanian et al. [14]).  Dead reckoning is also widely 
used in combination with other sensors for autonomous 
vehicles (e.g., Morimoto et al. [61]). 

4  Computational methods 

A computational method is mainly to detect image 

features by image processing or deal with sensor data 
fusion successfully for providing with basic information 

for agricultural vehicle autonomous guidance system. 
Therefore, the method choice and improvement is very 
important.  

4.1  Hough transform 
The Hough transform technique can be used to isolate 

the features of a particular shape within an image.  The 
transform was originally concerned with the identification 
of lines in the image, but later it was extended to 

identifying the position of arbitrary shapes, most 
commonly circles or ellipses.  The Hough transform as it 
is universally used today was developed in 1972 by 

Richard Duda and Peter Hart, who called it a "generalized 
Hough transform" after the related 1962 patent of Paul 
V.C. Hough.  The main advantage of using a Hough 
transform is that it is quite robust even if a group of 

points varies to some extent, and seeking a straight line is 
still possible.  The disadvantage is that in order to plot 

curves (i.e., sinusoids) for every observation point in 
Cartesian image space to r–θ in the polar Hough 

parameter space, the load of computational complexity is 
large.  As most crops are cultivated in rows, there   are 

a number of publications on deriving guidance signals 
from plant structures using the Hough 
transform[15,26,27,52,56,62,63]. 

A stereovision-based crop-row detection method for 
tractor automated guidance[32] used a stereovision-based 
agricultural machinery guidance system.  The algorithm 
consists of functions of stereo-image processing, 
elevation map creation and navigation point 

determination for crop row detection.  The research also 
dealt with crop row detection for autonomous tractor 
guidance. 

Åstrand et al.[15] modeled a plant row using a 
rectangular box instead of a line.  The width of the box 
is equal to the average width of the plants and the length 
of the box is “unlimited” as it fills the whole image.  
The rectangular box can be described by a set of parallel 
adjacent lines, which appear in the image as a set of lines 
that intersect at a virtual point outside the image, as 
shown in Figure 5. 

 
Figure 5  Rectangular box substitutes for a line [15] 

 

4.2  Kalman filter 
The Kalman filter[64] provides a sound theoretical 

framework for multi-sensor data fusion.  The approach 
depends upon tracking the position of the vehicle or the 
state of the system at all times.  Kalman filter models are 
often applied in GPS receivers to provide position 
estimates from raw GPS signals.  In a highly dynamic 
system that has the potential for significant acceleration, 
it is necessary to integrate GPS with an Inertial 
Navigation System (INS) using Kalman filters.  
Literature on the integration of INS and/or other sensors 
with GPS is abundant[19,38,39,65-68].  These integrated 
systems can improve the positioning accuracy, and more 
importantly, can provide reliable short-term positioning 
information if the GPS signal is lost. 

Han et al.[25] applied Kalman filtering to raw DGPS 
measurement data and effectively removed the DGPS 
noise and reduced the root-mean-squared (RMS) 
positioning error.  The maximum cross-tracking error was 
reduced from 9.83 to 2.76 m and the root-mean-squared 
error was reduced from 0.58 to 0.56 m. 
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Hague and Tillett[28] provided a method in which 
image processing was combined with a bandpass filter 
and extended Kalman filter.  The method does not rely 
upon segmentation of the plant background to reduce the 
brightness or color influence.  Results are shown in 
Figure 6. 

 
Fig.6  Row location [28] 

 
A new sigma-point Kalman filter was proposed and 

used to improve the Kalman filter[69].  Zhang et al.[70] 
compared both filters through simulation and found that 
the sigma-point Kalman filter was more numerically 
robust and computationally efficient. 
4.3  Other methods 

Søgaard and Olsen[7] proposed a method based on 
machine vision for detection and localization of crop 
rows distinguished by using the generalized Hough 
transformation method (as shown in Figure 7).  The 
method divided the grayscale image into horizontal strips 
and computed the center of gravity, by vector, as a 
substitute for the segmentation step to reduce the 
computational burden on the image processing. 

Han et al. [25] used three methods to obtain a guidance 
directrix, which applied a k-means clustering algorithm 
for row segmentation, a moment algorithm for row 
detection, and a cost function for guidance line selection. 
The soybean field results showed an average RMS offset 

error of 1.0 cm from 30 images.  The corn field results 
showed an average RMS offset error of 2.4 cm from 15 
images. 

 
Figure 7  Middle line is the guiding row line [7] 

 

5  Navigation planners 

Navigation planner plays an important role for 
agricultural vehicle autonomous control, which 
transforms the position deviation (heading, position or 
state) of the vehicle or device into the steering angle. 
Besides including tracking methods, the navigation 
planning must consider the sensor information and 
vehicle motion to guidance in the desirable course.  
5.1  Tracking methods 

Navigation planning uses four methods: position 
tracking, line tracking, map tracking and obstacle 
avoidance.  Most guidance system operations follow 
some nominal trajectory or directrix line.  The method 
usually uses local information including crop rows, swath 
edges, and tilled/untilled boundaries.  However, if the 
tracking signal weakens or vanishes, the operation fails. 
Map tracking is often used in GPS systems, but it is a 
labor- and time-intensive method.  

5.2  Vehicle motion models 
1) Dead reckoning 
Dead reckoning is reliable for short-distance traveling 

(two positions) on a smooth concrete road. Since motion 
information is integrated in order to obtain the position of 
the vehicle, there is a risk of error accumulation leading 
to positional drift if the sensor produces even a slight bias. 
On agricultural vehicles, dead-reckoning sensors can be 
as simple as wheel encoders, which measure the rotation 
of the vehicle or equipment wheels.  Freeland et al.[71] 
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experimented with a low-cost electronic compass used 
together with wheel encoders to provide dead-reckoning 
position information.  Dead reckoning is widely used in 
combination with other sensors for autonomous vehicles. 
Nagasaka et al.[19] and Kodagoda et al.[72] used rotary 
encoders.  Garacía-Pérez et al.[73] used odometers and a 
proximity capacitive sensor. 

2) Kinematic model 
Kinematic models are very simple and have been used 

by researchers to describe the lateral error relative to a 
nominal trajectory without taking into account vehicle 
dynamics[10,11,13,21].  Some of the research showed very 
good accuracy of less than 5 cm not only on a straight 
line but also on a curved path as soon as the vehicle 
satisfied the pure rolling constrains.  Unfortunately, pure 
rolling constraints are almost impossible to satisfy during 
agricultural tasks due to sliding, deformed tires or change 
in wheel-ground contact conditions, which degrade the 
performance and stability of automatic guidance. Some 
literature is related to improved kinematic models that 
can adapt to the sliding influence and promise guidance 
accuracy (e.g., Lenain et al.[74,75]; Fang et al.[76]).  The 
sliding effects have been taken into account for trajectory 
tracking control of agricultural vehicles and three 
variables characterizing the sliding effects were 
introduced into the kinematic model based on geometric 
and velocity constraints. An ideal refined kinematic 
model was obtained in which sliding effects appeared as 
additive unknown parameters using linearized 
approximation. 

3) Dynamic model 
Dynamic models are fairly complex for agricultural 

vehicle navigation, since describing all vehicle features 
(e.g., inertia, sliding, springing) leads to very large, 
intricate models.  In particular, most of the parameter 
values (mass, wheel-ground contact conditions, tire and 
wheel deformation) are difficult to obtain even based on 
experimental identification. However, agricultural vehicle 
tasks involve mostly dynamic processing and researchers 
are interested in investigating this [77-79]. 

4) Sensor fusion 

The principle of sensor fusion is to combine 
information from various sensing sources (e.g., GPS and 

machine vision, GPS and GDS) since an individual 
sensing technology cannot satisfy vehicle automation 
navigation operation for all models and all methods of 
use in different environments.  The appropriate sensor 

will function at the appropriate field status during 
operation.  Nevertheless, even under a given field 

operation, the availability of data from multiple sensors 
provides the opportunity for better data integration to 

provide superior results compared to those using an 
individual sensor.  Sensor fusion technology is becoming 
increasingly popular for agricultural navigation[12,20,25]. 

Zhang et al.[9] developed an on-field navigation 
system using a vision sensor, FOG and RTK GPS.  

Figure 8 shows the comparison results.  Garacía-Pérez et 
al.[73] developed a hybrid agent for behavior architecture 

adapted to agricultural navigation.  The farming vehicle 
was equipped with several positioning sensors (DGPS, 

digital compass and dead-reckoning system) and safety 
sensors (laser rangefinder, bumper, inclinometers, 
emergency stops) as well as an on-board processor, 
wireless communication system (WLAN) and 

electrohydraulic actuators.  Sensor-fusion algorithms 
were proposed to overcome the absence of GPS signals 
so as to obtain continuous and precise positioning. 

 
Figure 8  Comparison of navigation accuracy in vehicle offset 

from the desired path using sensor fusion, vision only, and 
GPS-FOG only based navigation controls [9] 

 

5) Neural steer model 
Noguchi and Terao [20] designed a neural network (NN) 

vehicle controller in which the motion of the mobile 
agricultural robot was specified as a nonlinear system 
with high learning ability.  This NN model was applied 
to navigation on an asphalt surface, with an accuracy of 
0.08 m in the offset.  Noguchi et al. [58] used an NN 
model to correct the geomagnetic direction sensor for the 
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inclination of the vehicle.  A field test was conducted on 
a square path (40-m sides) in a meadow.  The maximum 
directional angle error was 14° using the conventional 
method, but only 1° using the NN.  Zhu et al. [80] 
designed an NN vehicle model for estimating vehicle 
behavior on sloping terrain. Bernoulli’s lemniscate was 
employed to acquire training pairs.  Genetic algorithms 
and back propagation algorithms were used to train the 
NN vehicle model.  The tractor was successfully guided 
along a predetermined path with mean and standard 
lateral deviation of 5 and 6.7 mm, respectively.  Ryerson 
and Zhang[81] chose genetic algorithms to plan the 
optimal path for a guided vehicle to avoid known 
obstacles. 

6  Steering controller 

A good control system is necessary irrespective of the 

guidance sensor.  The controller translates sensor 
position deviation signals into a voltage signal that is 

used to open a valve forcing the hydraulic ram in the 
steering circuit to change the steering angle of the front or 
rear axle, or, in the case of side shifting the equipment, an 
additional ram to adjust the position of the equipment 

relative to the tractor or the row of plants. 
Agricultural vehicles often work on different types of 

terrain, even and uneven, or changing and unpredictable 
terrain ranging from asphalt to spongy topsoil in the field. 

In the case of automatic or autonomous navigation, 
steering controllers should be able to provide appropriate 

steering action in response to the variation in equipment 
operation state, traveling speed, tire cornering stiffness, 
ground conditions, and many other parameters 
influencing steering dynamics.  Consequently, steering 

controller design for agricultural vehicles is a difficult 
challenge. 

Most modern agricultural vehicles employ some form 
of hydraulic steering system, and recent developments in 
automatic steering controllers include advanced 
modifications to the existing hydraulic system 
considering vehicle dynamics, such as terrain conditions 

and vehicle status (speed and/or acceleration).  Various 
steering controllers, including PID, feed-forward PID 
(FPID), and fuzzy logic (FL) controllers, have been 

developed and implemented in guidance systems [9, 82,83]. 
O’Connor et al.[13] used a steering controller based on a 
set of linear motion equations.  Inoue et al. [84] developed 
an adaptive steering controller that corrects the steering 

system delay.  Cho and Lee[85] used a fuzzy logic 
controller for the autonomous operation of an orchard 

speed sprayer.  Kise et al.[43] developed an optimal 
steering controller and obtained good curved-path 

guidance results.  Zhang et al.[10] put forward a 
kinematic model in which the steering linkage geometry 
provided the gain between the hydraulic actuator and the 

front wheels.  The system model was used to close the 
steering control loop based on the feedback signal from 

the hydraulic steering actuator rather than from the front 
wheels.  Lenain et al.[75] considered agricultural vehicle 

sliding and pseudo-sliding on slippery ground and used 
predictive model control to preserve accuracy. 

An actuator, combined with the vehicle status, was 
used to convert the control signal from a feedback 
controller to the appropriate mechanical adjustment in 
steering angle to provide the position of the vehicle. 

7  Discussion 

Since the time when the first ‘driverless tractor’ 
prototype was created 50 years ago (Morgan 1958), 
research into automatic guidance has steadily progressed, 
particularly in the case of guidance system technologies, 
which have improved remarkably in the last two decades. 
However, with the exception of GPS receivers, vision 
sensors, laser rangers, gyroscopes and GDS, the 
commercialization of prototype agricultural guidance 
systems is very low. Various reasons are behind the 
absence of funds for developing these prototypes into 
commercial products.  Some cases have fallen into 
disuse as society has developed.  For example, new 
technology or production causes the prototype market to 
devalue, and performance standards for environmental 
protection and implementing tractors are changing. 
Nevertheless, some general conclusions can be drawn 
regarding the failure of many prototype ‘service robots’ 
to reach commercial viability. 

The environmental and performance requirements for 
agricultural vehicle guidance operation are extremely 
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strict (see Section 2).  In addition to this barrier (a more 
difficult consideration than other guidance applications), 
there are others barriers that have not yet been resolved 
from many years ago.  Hague et al.[24] concluded that 
dead-reckoning sensors lead to the accumulation of errors 
resulting in positional drift; laser or radar and image 
based artificial landmark positioning systems are a direct 
function of positioning, and not prone to accumulating 
drift errors, but the beacons take time to set up and may 
result in ambiguous and unreliable results due to false 
detection and failure to detect obscured beacons.  The 
popular machine vision and GPS also have their 
respective advantages and disadvantages.  Machine 
vision is an inexpensive and passive sensor, which has 
some excellent computer algorithms to support and 
advance successful research[14,25].  However, it also has 
difficulty dealing with changing light conditions, 
shadows, direct sunlight and other difficulties with 
extracting guidelines from the images captured in the 
working environment.  Although most problems can be 
solved with electronic shutters, automatic diaphragms, 
color differences and the right position and adjustment of 
the camera, a row of plants or a furrow is needed to guide 
the vehicle using image processing, and tasks such as 
spraying or fertilizing uncultivated fields need another 
strategy. GPS is different than machine vision, as it is not 
affected by environmental variations, and real-time 
kinematic (RTK) GPS can provide better accuracy. 
Nevertheless, GPS sensor accuracy depends on the 
position of the satellites.  In urban environments, 
especially in narrow streets (urban canyons), buildings 
can occult the microwaves from satellites. Moreover, a 
system using GPS for guidance requires that a 
predetermined path be given for the vehicle to follow. 
Secondly, a kinematic GPS is very expensive. GPS 
guidance systems pose a problem in terms of positioning 
the antenna on the roof of the agricultural vehicle with the 
equipment working at the ground level.  This means that 
on sloping ground and with changing soil conditions, 
deviations can occur between the virtual guideline and the 
path described by the equipment.  Solving this problem 
requires attitude measurement. 

With the advent of computer vision and GPS and their 

declining prices, it seems inevitable that these two 
technologies will be ‘fused’ together or one of them will 
be ‘fused’ with another technology, such as 
gyroscopy[19,61], GDC[11] or laser radar[14], to realize 
autonomous vehicles in agriculture, allowing real-time 
image processing with a digital controller on a simple PC, 
precision positioning with an RTK DGPS system or 
heading computation with a traditional gyroscope. 

However, if the guidance system for agriculture is 
commercialized, the following product research will be 
needed as single technologies mature.  An integrated 
consideration may be better. 

1) Evaluation of economic feasibility.  Electronics, 
computers, sensors and attachments are declining in price, 
mostly because high commercial demand enabled their 
manufacture at great economies of scale; however, the 
cost of designing and producing the special-purpose parts 
for agricultural guidance systems will increase markedly. 
An evaluation of economic feasibility is necessary to 
determine the market value and understand the difference 
compared with old conventional systems. 

2) Improvement of robustness in versatility and 
dependability of mechanical technology.  The 
agricultural machine operates in a harsher environment 
(often in paddy fields), but its operating time adaptability 
is stronger than other machines for harvesting, sowing 
and spraying and the operating times are usually pivotally 
related to benefit the farmers.  Hence, such machines 
should be sufficiently robust to work effectively under 
varying conditions.  Today’s technologies have not 
always proven capable of delivering this performance. 

3) Addition of safety to avoid the risk of damage 
resulting from the use of such machines.  Although the 
safety standard is different from countries, the use of 
automated machine will substantially increase a user’s 
legal liability.  If the users utilize the insurance against 
all damages resulting from the uses of such machines, the 
cost may be very expensive.  Thereby, it should be 
necessary to consider the safety of such machines based 
on different safety standard. 

4) Provision of service system.  A sophisticated 
machine that is broken cannot do a better job than a 
primitive machine.  As machines become more 
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complicated, the skills required for their operation and 
maintenance increase in proportion.  For agricultural 
application, the service system will be more important 
than in a factory environment, because there are very few, 
if any, technicians who will have the expertise or 
equipment for repairs and maintenance. 

With the emergence of new technologies in the 
industry, research into their application to agricultural 
vehicle guidance systems will contribute to the realization 
of autonomous agricultural vehicles or robots in the 
future.  For example, omnidirectional vision sensors[86] 
have become increasingly attractive for autonomous 
navigation systems.  The camera and mirror are 
mounted at the top of the mobile robot’s platform. Images 
captured by the sensor are an orthographic projection of 
the ground plane.  The images (obtained without 
rotating the robot) are a 360° view of the environment 
and therefore are not sensitive to wheel slippage or small 
vibrations.  This low-cost sensing device provides 
enough information for our navigation system.  
Although it is not easy to obtain distance estimations 
from an omnidirectional image due to the shape of the 
mirror, the apparent angles of objects around the robot are 
relatively accurate and easy to derive from the image[87,88]. 
We proposed this system as a potential substitute for the 
GPS function for localization using landmarks in the 
working environment. 

8  Conclusions 

This paper provides a brief review of the research on 
guidance system technologies in agricultural vehicles 
over the past 20 years.  Although the research 
developments are abundant, there are some shortcomings 
(e.g., low robustness of versatility and dependability of 
technologies) that are delaying the improvements 
required for commercialization of the guidance systems. 
It can be concluded that either GPS and machine vision 
technologies will be ‘fused’ together or one of them will 
be ‘fused’ with another technology (e.g., laser radar) as 
the trend development for agricultural vehicle guidance 
systems.  The application of new popular robotic 
technologies for agricultural guidance systems will 
augment the realization of agricultural vehicle automation 

in the future. 
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Abstract: Efforts are underway to rehabilitate the irrigation districts, such as in the Rio Grande Basin in Texas.  Water 
distribution network models are needed to help prioritize and analyze various rehabilitation options, as well as to 
scientifically quantify irrigation water demands, usages, and losses, and to help manage gate automation.  However, 
commercially available software packages were limited in applications due to their high cost and operational difficulty.  
This study aims to develop a modeling tool for modeling the water flow profile in irrigation distribution networks.  The 
goal of developing the modeling tool was to make the modeling process simple, fast, reliable and accurate.  On the basis 
of methodological study, the modeling tool has been developed for branching canal networks with the assumption of 
steady gradually varied flow.  The flow profile calculation of the tool was verified from a single channel with 1% root 
mean squared error compared to the benchmark calculation and a branching network with 5% to 12% relative errors 
compared to check point measurement along the network.  The developed modeling tool will be able to play an 
important role in water quantification for planning, analysis and development for modernization of irrigation systems. 
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1  Introduction  

Irrigation distribution networks are used extensively 
for agricultural water supply.  Irrigation districts deliver 
water to farms through the channels and pipelines. Efforts 
are underway to rehabilitate the irrigation districts. 
Quantitative evaluation tools are needed to help prioritize 
and analyze various rehabilitation options, as well as to 
scientifically quantify irrigation water demands, usages, 
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and losses, and to help manage gate automation.  There 
has been much research in developing computer models 
and software packages for water resources planning and 
management through the past three decades[1].  Models 
and software packages are commercially or research 
available for flow modeling and gate automation of 
irrigation channels.  Examples are: SOBEK (Delft 
Hydraulics, Delft, Netherlands), an integrated 1D/2D 
modeling program for water management, design, 
planning and policy making in river, rural and urban 
systems (http://www.sobek.nl/prod/index.html); 
CanalCAD (Laboratoire d’Hydraulique de France, 
Grenoble, France; Parrish Engineering, Beaverton, 
Oregon, USA), a hydrodynamic simulator of both steady 
and unsteady flow in canal systems with manual or 
automatic gates (http://www.iihr.uiowa.edu/projects/ 
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canalcad/index.html); Mike 11 (Danish Hydraulic 
Institute, Hørsholm, Denmark), a versatile and modular 
engineering software tool for modeling conditions in 
rivers, lakes/reservoirs, irrigation canals and other inland 
water systems (http://www.dhisoftware.com/mike11); 
SIC (Cemagref, Antony Cedex, France), a simulation 
model for canal automation design (http://canari. 
montpellier.cemagref.fr/papers/sic30.pdf); HEC-RAS 
(IWR, US Army Corps of Engineers, Davis, California, 
USA), a software package that allows one-dimensional 
steady and unsteady flow calculations in natural channels 
(http://www.hec.usace.army.mil/software/hec-ras); and 
CanalMan (Utah State University, Logan, Utah, USA) a 
model that performs hydraulic simulations of unsteady 
flow in branching canal networks (http://www. 
engineering.usu.edu/bie/software/canalman.php). These 
models or software packages are for general use and 
either expensive, such as SOBEK and CanalCAD or are 
difficult to be customized for applications under specific 
conditions even free downloadable, such as HEC-RAS 
and CanalMan.  

Models have been evaluated for irrigation systems. 
Wallender[2] has done model simulation for both a single 

furrow as well as on a field-wide basis.  Model 
simulations were evaluated to determine the importance 

to irrigation performance of each spatially-varying model 
input.  Esfandiari and Maheshwari[3] studied four furrow 
irrigation models, referred to as the Ross, Walker, 
Strelkoff and Elliott models for their prediction of 

advance and recession times and runoff, and for their 
computational time per simulation run and volume 
balance error under three field conditions in south-east 
Australia.  Hidalgo et al.[4] developed a procedure for 
calibrating on-demand irrigation network models.  This 
procedure compared a new objective function with two 
more commonly used objective functions.  This 

procedure was applied to an on-demand irrigation 
network located in Tarazona de La Mancha (Albacete, 
Spain) where flow and pressure at hydrant level was 
measured.  Islam et al.[5] presented a hydraulic 

simulation model developed for steady and unsteady flow 
simulation in irrigation canal network.  The model uses 

the implicit four-point Preissmann scheme for 

discretization of the Saint-Venant equations and solves 
the resulting equations using the sparse matrix solution 
technique.  The model is applicable for simulating flow 
in a series of linearly connected reaches, and branched as 

well as looped canal networks.  In general, unsteady 
gradually varied flow (USGVF) can be described by the 

Saint-Venant equations[6]. These equations are 
simultaneous partial differential equations with a number 

of boundary conditions.  However, in practice use of a 
unsteady canal model requires serious investments of 
time and personnel[7].  As a special case of USGFV, 

steady gradually varied flow (SGVF) can be described by 
a single ordinary differential equation[6], which is much 

more easily implemented than the Saint-Venant 
equations.  In many cases the description of SGVF is 

very useful and effective and the USGVF could be 
simplified to cascaded SGVFs in solving problems in 

flow computation and analysis. 
The objective of the study was to develop a modeling 

tool based on the description of SGVF for modeling the 
water flow profile in irrigation distribution networks in 
the Rio Grande Basin in Texas and other similar areas. 
The developed modeling tool will make the modeling 
process simple, fast, reliable and accurate. 

2  Study area 

Irrigated lands in different areas have different 
characteristics. This study will focus on the irrigated 
areas with the following characteristics:  

• The waterways are shallow and have small hydraulic 
gradients.  In other words, the channel bottom slope 
is small and the water flows mildly from upstream to 
downstream with gravity and sufficient head 
pressure; 

• The distribution networks are dendritical, i.e. the 
routes of the networks are branched but not looped. 

• The networks are open channels 
In the Lower Rio Grande Valley in Texas (Figure 1), 

the project area, the elevations range from sea level in the 
east to about 200 m in the northwest, but are mainly less 
than 100 m.  Much of the area is nearly level. Drainage 
ways are shallow and have low gradients.  The canals 
and pipelines in the distribution networks have small 
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hydraulic gradients with few relief pumps.  The objects of this study will be irrigation canals. 

 
Figure 1  Service areas of the irrigation districts in Lower Rio Grande Valley of Texas 

 
3  Computing methods 

In the open-channels (canals) of irrigation networks, 
water flows are typically categorized as: 

1) Steady uniform flow (SUF); 2) Steady gradually 
varied flow (SGVF); and 3) Unsteady gradually varied 
flow (USGVF). 

The SGVF can be computed and analyzed by 
observing the conservation of mass and energy with an 
ordinary differential equation[6].  Further, the USGVF 
can be computed and analyzed using the Saint-Venant 
equations observing the conservation of mass and 
momentum[6].  It can be derived mathematically that the 
SGVF is a special case of the USGVF.  The 
Saint-Venant equations are partial differential, so the 
implementation of the computation is much more 
difficult. In practice the SGVF is very useful and 
effective in solving a lot of problems in flow computation 
and analysis.  With the fundamental equation the 
solutions can be cascaded along a canal channel and the 

layout of a distribution network under different initial and 
boundary hydraulic conditions. 

Non-uniform flow is the prevailing flow conditions in 
irrigation systems.  For the area the irrigation channels 
are shallow and have small hydraulic gradients such as 
the Rio Grande Basin in Texas the SGVF is the dominate 
flow type unless some transient processes typically 
happened around gate structures would result in the 
USGVF flow condition.  Therefore, the computation of 
the SGVF profiles in irrigation distribution networks is 
the technique needed in developing the modeling tool. 
3.1  SGVF flow profile computation 

The computation of the SGVF profiles basically 
solves the governing ordinary differential equation.  The 
main objective of the computation was to determine the 
shape of the flow profile. Broadly three methods of the 
computation were classified as[6]: the graphical- 
integration method, the direct-integration method, and the 
step method. 

The graphical-integration procedure is straightfor-  
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ward and easy to follow but it may become very laborious 
when applied to actual problems.  Because the 
differential equation of the SGVF cannot be expressed 

explicitly in terms of y for all types of channel cross 
sections, a direct and exact integration of the equation is 
practically impossible; hence, so far this method has been 

developed either to solve the equation for a few special 
cases or to introduce assumptions that make the equation 
amenable to mathematical integration[6].  Basically a 

step method is to divide a channel into short reaches and 

carry the computation step by step from one end of the 
reach to the other.  There are a great variety of step 
methods. Some appear superior to others in certain 

respects, but no one has been found to be the best in all 
applications. 

This study gives a step method based on the need of 

flow profile computation for irrigation channels.  This 
method divides a channel to small reaches.  The length 
of the reaches cannot be too big because this may cause 

the iterative procedure to fail, and cannot be too small 
either because this should increase computational burden. 

With the divided reaches the computation starts from the 
downstream end of the channel for subcritical flow (from 

the upstream end for supercritical flow) by applying the 
Bernoulli equation to the reach: 

2 2

2 2
u d

u o d f
v vy S x y S x
g g

α α+ + ∆ = + + ∆     (1) 

where  vu and vd are the flow velocities at the upstream 

and downstream ends of the reach respectively;  α is the 
velocity distribution coefficient which takes into account 
that in channel cross-section the distribution of velocity is 

not uniform;  ∆x is the length of the reach;  So is the 

channel bottom slope. 
The solution of the equation for subcritical flow will 

be water depth h and water level z=y+∆z at the upstream 

end of the reach where ∆z is the difference between the 

elevations at the upstream and downstream ends of the 
reach. Equation (1) can be reformed to solve the water 

depth at the upstream end of the reach: 
2 2
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=
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=

+
=

              (3) 

where  Au and Ad are the channel cross section areas of 

the upstream and downstream ends respectively;  Ru and 
Rd are the channel hydraulic radiuses of the upstream and 

downstream ends respectively. 
With the solutions as the initial conditions the 

equation can be applied to the next reach and so on. 

The computation at each reach is an iterative process. 
Given Q, n, So, and channel cross section parameter such 

as bottom width b and side slope s for a trapezoid cross 

section, at the beginning the upstream end water depth yu 
was set to be the downstream end water depth yd which 

was from the solution of the previous reach or the initial 
condition at the channel downstream end, i.e. yu=yd.  
With the initial yu a new estimate of the unknown water 

depth using equations (2) and (3) was calculated as ˆuy . 

Then, the initial water depth was compared with the 

estimated depth with ˆu uy y ε− <  where ε was a pre-set 

small number for stopping the iteration.  If the stopping 

condition is met, the iteration will stop and ˆuy  is the 

solution; otherwise set ˆu uy y=  and continue the iteration. 

3.2  Branching network SGVF flow profiling 
The algorithm above can be used to compute SGVF 

flow profiling in a canal channel or a distribution network 

by cascading the solutions step by step along the canal 

channel and the layout of a distribution network under 
different initial and boundary hydraulic conditions. 

Branching irrigation distribution networks are 
dominated in the studied areas.  This kind of networks 
typically consists of laterals, second-level laterals, and 
even third-level laterals along a main canal.  The flow 
profile computation over a branching network starts by 
initializing discharge and water depth at the one end of 
the main canal.  Then when the computation proceeds to 
a lateral, the computation needs to continue by initializing 
discharge and water depth at the one end of the lateral. 
When the computation proceeds to a second-level lateral, 
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the computation needs to continue by initializing 
discharge and water depth at the one end of the 
second-level lateral.  Keep on going like this until the 
farm turnouts are reached and the computations needs to 
recursively go back to the main canal.  The same 
procedure follows when the second, third, … laterals are 
met.  The computation will stop when it proceeds to the 
other end of the main canal.  Figure 2 shows the flow 
chart of the procedure of subcritical SGVF profile 
computation over a branching irrigation network. This 
procedure can handle the branching irrigation networks in 
arbitrary layouts as long as they only have the first-level 
laterals.  This procedure can be easily extended to the 
cases of arbitrary branching networks with second-level, 
third-level, and n-level laterals.  

 
Figure 2  Flow chart of computation of subcritical SGVF profile 

over branch irrigation networks with first-level laterals 

 
3.3  Gate calibration 

Gate is the most popular structure for controlling 
water flow through irrigation channels.  In general, four 
different flow regimes can occur at gate structures. Each 
of the four regimes has a standard equation to 
characterize the flow through the gate structure[9,10]:  

1) Free orifice (FO): it is free gated flow 

2 ( 0.5 )fo o u oQ C LG g y G= −          (4) 

where  L is the gate size;  Go is the gate opening;  yu is 
the water depth upstream of the gate structure;  Cfo is the 
discharge coefficient of the FO flow. 

2) Submerged orifice (SO): it is submerged gated 
flow 

2 ( )so d u dQ C Ly g y y= −           (5) 

where  yd is the water depth downstream of the gate 
structure;  Cso is the discharge coefficient of the SO 
flow. 

3) Free non-orifice (FN): it is free weir flow 

nf uQ C L y=                (6) 

where  Cnf is the discharge coefficient of the FN flow. 
4) Submerged non-orifice (SN): it is submerged weir 

flow 

2 ( )sn d u dQ C Ly g y y= −           (7) 

where  Csn is the discharge coefficient of the SN flow. 
In practice, although water flow can transit from one 

regime to the other, many canal gate structures and 
channel constrictions such as flumes operate mostly 
under a single flow regime. 

To use any one of the equations (4), (5), (6), and (7) 
to characterize the water flow though a specific gate 
structure, the corresponding discharge coefficient, Cfo, 
Cso, Cfn, or Csn, needs to be determined (calibrated).  The 

calibration procedure is as follows[9]: 
1) Conduct field survey around the concerned gate 

structure: gate dimensions and gate upstream and 
downstream channel hydraulic characteristics.  

2) Determine the flow regime by experience or by 
some computation about water flow through the gate 

structure. 
3) Find out the standard equation of a specific gate 

structure for the determined flow regime: equation (4), 
(5), (6), or (7).  

4) Rearrange the equations (4), (6), and (7) in the 

following general form: 
Qp(yu, yd, Go, L) = Cq(yu, yd, Go)       (8) 

where  C is Cfo, Cfn, or Csn. 
   Equation (4) can be assumed in the form: 
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log10(Cso)=a+b*log10(yd/Go)         (9) 
where  a and b are regression coefficients. 

I. Based on the n sequential measurements of (Qi, yu
i, 

yd
i, Go

i) (i=1,2,…,n), calculate (qi(yu
i, yd

i, Go
i), Qipi(yu

i, 
yd

i, Go
i, L)) for equation (8) or (log10(yd

i/Go
i), log10(Cso

i)) 
for equation (9) (i=1,2,…,n). 

II. Based on the calculation, the regression equation is 
formulated as: 

ˆ /p Cq Q=                (10) 

   for FO, FN, or SN flow where Ĉ  is the estimated 

value of C, or  

log10(Cso)= â + b̂ *log10(yd/Go)        (11) 

where  â  and b̂  are the estimated values of a and b 
respectively.  

III. The performance of the calibration can be 
evaluated by calculating the standard deviations of 
residuals. 

4  Modeling tool prototyping 

Using the method above the modeling tool was 
programmed and developed.  In order to make the 
modeling process simple, fast, and accurate, three 
modules have been developed: 

1) SGVF computation for a single canal channel 
2) SGVF computation for branching canal networks 
3) Flow computation through control sections 
The third module is for computing the flow through 

gates, weirs, and flumes.  The discharge and depth 
relationships were calibrated and saved for model 
implementation. 

C++ programming language was chosen for 
prototyping the modeling tool.  The programs were 
designed and developed using the principles of OOP 
(Object-Oriented Programming).  

5  Model validation  

The water flow profiles in a single irrigation canal 
channel and a branching network irrigation scheme were 
computed for model validation.  As the benchmark, the 
data of the single irrigation canal channel were taken 
from Chow (1959)[6].  The computing results were 
compared with Chow’s computation to validate the 
computation of this study.  

The irrigation scheme is a real-world irrigation 
branching network (Figure 3), which spans about 1700 m 
and is located at an irrigation district Jamaica around an 
area that has similar characteristics as the Lower Rio 
Grande Valley of Texas.  The data were measured and 
collected from the field survey and flow measurement. 
The computing results were verified with check point 
values along the irrigation system.  In the scheme, the 
main canal goes through the points 1, 2, 3, 4, 5, 6, and 7. 
In the main canal at the upstream end is a sharp-crested 
weir (HS1).  A siphon wall is in the middle (HS2).  At 
the downstream end is another sharp-crested weir (HS5). 
Two laterals are from the main canal through two sluice 
gates: HS3 and HS4 respectively.  HS3 was fully shut 
down during field survey and measurement.  HS4 was 
open to allow water flow to go through the points 5a, 5b, 
5c, 5d, 5e, 5f, 5g and 5h.  HS 6 and HS7 are two sluice 
gates to the farm turnouts at 5f and 5h respectively. 

 
Figure 3  A branching network irrigation scheme 
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Before computing the water level profile, these sluice 
gates need to be calibrated.  With the data collected 
during the field survey and flow measurement the results 
of the calibrations are shown in Table 1. 
 

Table 1  Gate calibration in the branching network irrigation 
scheme. 

Gate Flow regime Gate status Gate flow equation 

HS3 NA Closed NA 

HS4 Free Weir 
Flow Open 

1.5
nf uQ C Ly=  

/ 2nfw nfC C g=  

ˆ
nfwC =0.0469 

HS6 Submerged 
Orifice Flow Open 2 ( )so d u dQ C Ly g y y= −  

 Cso=0.3148 (yd/Go)-0.2917 

HS7 Submerged 
Orifice Flow Open 2 ( )so d u dQ C Lh g y y= −  

Cso=0.609677(yd/Go) -2.2873 

 
With all of the data collected in field survey and flow 

measurement, and gate calibration equations, the 
modeling tool computed the water level profile over the 
branching network irrigation scheme automatically.  A 
group of measured data was used to initialize model 
computation (from main and lateral downstream ends) 
and to verify the computation results at some check point 
through the network scheme.  This group of data is 
listed Table 2. 

 

Table 2  A group of measured data for model computation 
initialization and verification. 

 Data Usage 

Head on HS5 0.22 m Initial condition 

Gate Opening at HS4 0.30 m Boundary condition 

Discharge over HS5 0.35 cms* Initial condition 

Gate Opening at HS6 0.37 m Boundary condition 

Discharge through HS6 0.01 cms Initial condition 

Gate Opening at HS7 0.58 m Boundary condition 

Discharge through HS7 0.03 cms Initial condition 

Depth upstream of HS7 0.255 m Initial condition 

Depth upstream to point 5 0.67 m Verification 

Head on HS1 0.21 m Verification 

Note: *cms – cubic meter per second. 
 

6  Results and discussion 

6.1  Single irrigation canal channel 
Chow (1959) [6] gave an example of computing the 

subcritical water level profile in a trapezoid channel.  
This profile was created by a dam which backs up the 
water to a depth of 1.53 m immediately behind the dam.  

This channel carries a discharge of Q=11.33 cms with b=  
6.10 m (channel bottom width), s=2 (channel side slope), 
So=0.0016, and n=0.025.  The length of the profile is 
about 732 m. 

Chow used two methods for the computation: the 
graphical-integration method and the direct step method. 
The computation of this study was compared with 
Chow’s direct step computation.  Table 3 shows this 
comparison.  RMSE (Root Mean Squared Error) of this 
computation with Chow’s computation is 0.011219 (1%), 
which indicates that the computation of this study is very 
close to what Chow computed.  Figure 4 is the plot of 
the comparison of the computed water levels. 
 

Table 3  Computed water level profiles of the trapezoid 
channel (1.53 m water depth behind the dam, Q=11.33 cms,  

b=6.10 m, s=2, So=0.0016, n=0.025, and length of the 
 profile is 732 m) 

x – distance to the  
channel downstre 

am end /m 

y – computed water  
level profile in this  

study /m 

y′ – computed water 
level profile by  

Chow (1959)[6] /m 
[(y-y′)/y′]2 

0.00 1.52 1.52 0 
47.09 1.54 1.53 3.92E-06 
97.22 1.56 1.55 3.45E-05 
148.86 1.59 1.57 9.32E-05 
206.58 1.63 1.61 0.000129 
270.38 1.67 1.65 0.000218 
347.85 1.74 1.71 0.000256 
396.46 1.79 1.76 0.000242 
455.70 1.85 1.82 0.000225 
493.68 1.90 1.87 0.000214 
539.25 1.95 1.93 0.000159 
575.70 2.00 1.97 0.000151 
622.79 2.06 2.04 7.97E-05 
663.80 2.12 2.10 5.22E-05 
721.53 2.20 2.19 3.09E-05 

 RMSE 0.011219(1%) 

 
Figure 4  Plot of computed water level profiles of the trapezoid 

channel 
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6.2  Branching network irrigation scheme 
All of the computing results are summarized in Table  

4 compared with the measured data at check points. The 
following figures illustrate the numbers in the table. 

 

Table 4  Modeling tool computation result summary 

Location Initial and computed 
discharge /cm·s-1 

Computed water depth  
/m 

Measured water depth  
/m Comment 

Main downstream 0.35  0.22 m Initial conditioned 

Channel 6-7 (244 m) 0.35 0.49 m   

Channel 5e-5g (15 m) 0.03 0.23 m 0.26 m Initial conditioned and the relative error between  
computed and measured water depth is 11.5% 

Channel 5b-5e (122 m) 0.01 0.37 m  Initial condition 

Channel 4-5 (244 m) 0.4 0.67 m 
 0.67 m Based on the computation, the 0.67 m depth happened  

at about 6.1 m upstream point 5 

Channel 2-3 (1,219 m) 0.4 1.07 m   

Main upstream Head on HS1 0.4 0.2 m 0.21 m The relative error between computed and measured  
water depth is 5% 

 

Figure 5 shows the computed water level profile in 
the downstream channel of the main canal (6-7).  The 
channel length is about 244 m.  The computed water 
level is very close to the normal depth at the distance of 
3.05 m.  So, if the distance is greater than 3.05 m, the 
flow can be considered uniform at the depth of 0.49 m. 

 
Figure 5  Computed water level profile of the main canal  

channel 6-7 
 

Figure 6 shows the computed water level profile in 
the downstream channel of the lateral (5e-5g).  The 
channel length is also about 15 m.  The graphic indicates 
that the water level is going to but never reaches the 
normal depth.  So, the flow in this channel is considered 
as pure gradually varied.  The average water depth is 
about 0.23 m, which is 0.03 m away from the measured 
depth of 0.26 m (relative error is 12%). 

Figure 7 shows the computed water level profile in 
the upstream channel of the lateral (5b-5e).  The channel 

length is about 122 m.  The computed water level is very 
close to the normal depth at the distance of 91 m.  So, if 
the distance is greater than 91 m, the flow can be 
considered uniform at the depth of 0.37 m.  

 
Figure 6  Computed water level profile in the downstream  

channel of the lateral 5e-5g. 

 
Figure 7  Computed water level profile in the upstream  

channel of the lateral 5b-5e 

http://www.ijabe.org
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Figure 8 shows the computed water level profile in 

the intermediate channel of the main (4-5).  The channel 
length is also about 244 m.  The result indicates that the 

computed water level is going to but never arrives at the 

normal depth over the channel.  So, the flow is 
considered as pure gradually varied.  Using the depth 

curve, it can be derived that the 0.67 m water depth 

happened about 6.1 m upstream point 5, which matches 
the field measurement point. 

 
Figure 8  Computed water level profile in the intermediate 

channel of the main 4-5 
 

Figure 9 shows the computed water profile in the 

upstream channel of the main (2-3).  The channel length 

is about 1219 m.  The water level is close to the normal 
depth at the distance of 244 m from the downstream end 

of the channel.  So, if the distance is greater than 244 m, 

the flow can be considered uniform at the depth of   
1.07 m. 

 
Figure 9  Computed water profile in the upstream channel  

of the main 2-3 

Finally, the computation produced 0.2 m water head 
on the sharp-crested weir HS1, which is close to the 
measured depth of 0.21 m with the absolute error of 0.01 
m (relative error is 5%). 

7  Conclusions 

This study has developed a tool for modeling the 
water flow profile in irrigation distribution networks.  
The modeling tool assumes SGVF flow in the branching 
canal networks.  The tool starts the computation by 
initializing discharge and water depth at the end of the 
main canal and the laterals.  It handles the branching 
networks in arbitrary layouts with first-level laterals.  
The method can be extended to the cases of arbitrary 
branching networks with second-level, third-level, and 
n-level laterals.  The modeling tool was evaluated in 
water flow profiling for a single irrigation canal channel 
and an irrigation branching canal network.  The 
calculations of the modeling tool had a 1% RMSE 
compared to the benchmark calculation of a single 
channel flow and 5% to 12% relative errors compared to 
check point measurement along a branching canal 
network.  The implementation and results of the 
modeling tool indicated a strong capability in handling 
the modeling task in different conditions such that the 
modeling process with the tool becomes simple, fast, 
reliable and accurate with much less cost and least 
configurations compared to commercially available 
models and software packages.  The outcome of this 
study will be able to play an important role in water 
quantification for planning, analysis and development for 
modernization of irrigation systems for irrigation districts 
in the Lower Rio Grande Valley of Texas and any other 
similar areas.  
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